Medizinische Klinik

, Volume 94, Supplement 3, pp 84–89 | Cite as

A conservative triple antioxidant approach to the treatment of hepatitis C

Combination of alpha lipoic acid (thioctic acid), silymarin, and selenium: Three case histories

Abstract

Background: There has been an increase in the number of adults seeking liver transplantation for hepatitis C in the last few years and the count is going up rapidly. There is no reliable and effective therapy for chronic hepatitis C since interferon and antivirals work no more than 30% of the time, and liver transplant surgery is uncertain and tentative over the long run. This is because, ultimately, residual hepatitis C viremia infects the new liver. Furthermore, liver transplantation can be painful, disabling and extremely costly.

Treatment Program: The author describes a low cost and efficacious treatment program in 3 patients with cirrhosis, portal hypertension and esophageal varices secondary to chronic hepatitis C infection. This effective and conservative regimen combines 3 potent antioxidants (alpha-lipoic acid [thioctic acid], silymarin, and selenium) that possess antiviral, free radical quenching and immune boosting qualities.

Conclusion: There are no remarkably effective treatments for chronic hepatits C in general use. Interferon and antivirals have less than a 30% response rate and because of the residual viremia, a newly transplanted liver usually becomes infected again. The triple antixoidant combination of alpha-lipoic acid, silymarin and selenium was chosen for a conservative treatment of hepatitis C because these substances protect the liver from free radical damage, increase the levels of other fundamental antioxidants, and interfere with viral proliferation. The 3 patients presented in this paper followed the triple antioxidant program and recovered quickly and their laboratory values remarkably improved. Furthermore, liver transplantation was avoided and the patients are back at work, carrying out their normal activities, and feeling healthy. The author offers a more conservative approach to the treatment of hepatitis C, that is exceedingly less expensive. One year of the triple antioxidant therapy described in this paper costs less than $ 2,000, as compared to mor than $300,000 a year for liver transplant surgery. It appears reasonable, that prior to liver transplant surgery evaluation, or during the transplant evaluation process, the conservative triple antioxidant treatment approach should be considered. If these is a significant betterment in the patient’s condition, liver transplant surgery may be avoided.

Key Words

Hepatitis C Treatment Antioxidant Alpha lipoic acid thioctic acid Silymarin Selenium 

Eine konservative dreifache antioxidante Methode zur Behandlung von Hepatitis C. Eine Kombination von Alpha-Liponsäure (thioctic acid), Silymarin und Selenium: Drei Krankenberichte

Zusammenfassung

Hintergund: Es gibt im Allgemeingebrauch keine bemerkenswert erfolgreiche Behandlung von chronischer Hepatitis C.Interferon und Virostatika haben weniger als eine 30prozentige Ansprechsquote, und wegen der zurückbleibenden Virämia wird meistens eine neu transplantierte Leber wieder infiziert.

Behandlungsprogramm: Die dreifache antioxidante Kombination von Alpha-Liponsäure, Silymarin und Selenium wurde für eine konservative Behandlung von Hepatitis C gewählt, denn diese Stoffe schützen die Leber vor freier radikaler Beschädigung, erhöhten das Niveau anderer fundamentaler Antioxidanzien und hindern virale Fortpflanzung. Die drei Patienten, die in dieser Abhandlung geschildert werden, folgten dem dreifachen antioxidanten Programm, sie erholten sich rasch, und ihre Laborwerte verbesserten sich beachtlich. Außerdem wurden Lebertransplantationen vermieden, die Patienten arbeiten wieder, führen ein normales Leben und fühlen sich gesund.

Schlußfolgerung: Der Autor bieter eine konservativere Methode zur Behandlung von Hepatitis C, die wesentlich billiger ist. Ein Jahr der dreifachen antioxidanten Behandlung, die in dieser Abhandlung beschrieben wird, kostet weniger als $ 2000, eine Lebertransplantation kostet im Vergleich mehr als $ 300.000 im Jahr. Es scheint vernünftig zu sein, bevor eine Lebertransplantationsoperation in Erwägung gezogen wird oder während der Bewertung einer Lebertransplantationsoperation die konservative dreifache Behandlung zu erwägen. Wenn es eine beachtliche Verbesserung im Befinden des Patienten gibt, kann eine Lebertransplantationsoperation vermieden werden.

Schlüsselwörter

Hepatitis C Behandlung Antioxidant Alpha-Liponsäure Thiotic acid Silymarin Selenium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal R, et al. Inhibitory effect of silymarin, an anti-hepatotoxic flavenoid on 12-O-tetradecanoylphosbol-13-acetate-induced epidermal ornithine decarboxylase activity and mRNA in SENCAR mice. Carcinogenesis 1994;15:1099–103.CrossRefGoogle Scholar
  2. 2.
    Albrecht M, Frerick H, et al. Therapy of toxic liver pathologies with Legalon. Z Klin Med 1992;47:87–92.Google Scholar
  3. 3.
    Bartter F, Berkson B, et al. Thioctic acid in the treatment of poisoning with alpha-Amanitin. In: Faulstich H, et al., eds. Amanita toxins and poisoning. Baden-Baden: Witzstrock. 1980:197–202.Google Scholar
  4. 4.
    Bauer A, Harrer T, et al. Alpha lipoic acid is an effective inhibitor of human immunodeficiency virus replication. Klin Wochenschr 1991;69:722–4.CrossRefGoogle Scholar
  5. 5.
    Berger V, et al. Influence of thioctic acid on the chemotherapeutic efficacy of cyclophosphamide and vincristine sulfate. Arzneim Forsch 1983;33:1286–8.Google Scholar
  6. 6.
    Berkson B. Treatment of four delayed mushroom poisoning patients with thioctic acid. In: Faulstich H, et al., eds. Amanita toxins and poisoning. Baden-Baden: Witzstrock, 1980:203–210.Google Scholar
  7. 7.
    Burkhart V, Koike T., et al.: Dihydrolipoic acid protects pancreatic islet cells from inflammatory attack. Agents and Actions 1993;38:60–5.CrossRefGoogle Scholar
  8. 8.
    Bustamante J, Slater A, et al. Antioxidant inhibition of thymocyte apoptosis by dihydrolipoic acid. Free Radicals Biol Med 1995;19:339–49.CrossRefGoogle Scholar
  9. 9.
    Cao X, et al. The free radical scavenger alpha-lipoic acid. Protects against cerebral ischemia-reperfusion injury in gerbils. Free Radicals Res 1995;23:365–70.CrossRefGoogle Scholar
  10. 10.
    Carini R. Lipid peroxidation and irreversible damage in rat hepatocyte protection by the silybin-phospho-lipid complex IdB 1016. Biochem Pharmacol 1992;43:2111–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Donohue M. Hepatitis C related liver transplants will skyrocket. Family Practice News 1999;March 15:32.Google Scholar
  12. 12.
    Estrada D, Ewart H, et al. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid. Diabetes 1996;45:1798–804.PubMedCrossRefGoogle Scholar
  13. 13.
    Ferenci P, Dragosics B, et al. Randomized controlied trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol 1989;9:105–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Fintelmann V. Postoperatives Verhalten der Serumcholinesterase und anderer Leberenzyme. Med Klin 1973;68:809.PubMedGoogle Scholar
  15. 15.
    Fuchs J, Schofer H, et al. Studies on lipoate effects on blood redox state in human immunodeficiency virus infected patients. Arzneim Forsch 1993;43:1359–62.Google Scholar
  16. 16.
    Greenamyre JT, Garcia-Osuna M, Greene J. The endogenous cofactors, thioctic acid and dihydrolipoic acid are neuroprotective against NMDA and malonic acid lesions of striatum. Neurosci Lett 1994;171:17–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Gregus Z, Stein A, et al. Effects of lipoic acid on biliary excretion of glutathione and metals. Toxicol Appl Pharmacol 1992;114:88–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Grunnert R. The effect of DL-alpha lipoic acid on heavy metal intoxication in mice and dogs. Arch Biochem Biophys 1960;86:190–5.CrossRefGoogle Scholar
  19. 19.
    Haugaard N, Haugaard E, et al. Stimulation of glucose utilization by thioctic acid in rat diaphragm incubated in vitro. Biochem Biophys Acta 1970;222:583–6.PubMedGoogle Scholar
  20. 20.
    Jacob S, Henriksen E, et al.: Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneim Forsch 1995;45:872–4.Google Scholar
  21. 21.
    Jayanthi S, et al. Effects of DL alpha-lipoic acid in glyoxylate-induced acute lithiasis. Pharmacol Res 1992;30:281–8.CrossRefGoogle Scholar
  22. 22.
    Kubicka J. Traitement des empoisonnements fongiques phalloidinens en Tchecoslovaquie. Acta Mycol 1968;4:373.Google Scholar
  23. 23.
    Loginov A, Nilova T, et al. Pharmacokinetics of lipoic acid preparations and their effects on ATP synthesis, processes of microsomal and cytosole oxidation in human hepatocytes during liver damage. Pharmacol Toxicol 1989;52:78–82.Google Scholar
  24. 24.
    Maitra I, Serbinova E, et al. Alpha lipoic acid prevents butathione sulfoximine-induced cataract formation in newborn rats. Free Radicals Biol Med 1995;18:823–9.CrossRefGoogle Scholar
  25. 25.
    Marshall E, Graul R, et al. Treatment of alcohol related liver disease with thioctic acid. Gut 1982;23:1088–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Mira L, et al. Scavenging of reactive oxygen species by silibinin dihemisuccinate. Biochem Pharmacol 1994;48:753–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Nagamatsu M, Nickander K, et al. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabet Care 1995;18:1160–7.CrossRefGoogle Scholar
  28. 28.
    Ou P, Tritschler H, et al. Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem Pharm 1995;50:123–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Palasciano G, et al. The effect of silymarin on plasma levels of malondialdchyde in patients receiving long term treatment with psychotropic drugs. Curr Ther Res 1994;55:337–45.CrossRefGoogle Scholar
  30. 30.
    Pietrangelo A, et al. Antioxidant activity of silybin in vivo during long term iron overload in rats. Gastroenterology 1995;109:1941–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Plomteux G, et al. Hepatoprotector action of silymarin in human actute viral hepatitis. Int Res Commun Syst 1977;5:259.Google Scholar
  32. 32.
    Prehn J, Karkoutly C, et al. Dihydrolipoic acid reduces neuronal injury after cerebral ischemia. Cereb Blood Flow Metab 1992;12:78–87.Google Scholar
  33. 33.
    Ramakrishnan N., Wolfe N, Catravas G. Radioprotection of hematopoietic tissues in mice by lipoic acid. Radiat Res 1992;130:360–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Salmi H, Sarna S. Effect of silymarin on chemical, functional and morphological alterations of the liver. A double blind study. Scand J Gastroenterol 1982;17:517–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Sandhya P, et al. Role of DL alpha-lipoic acid in gentamycin-induced nephrotoxicity. Mol Cell Biochem 1995;145:11–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Scott B, Aruoma O, et al. Lipoic acid and dihydrolipoic acid as antioxidants: A critical evaluation. Free Readicals Res 1994;20:119–33.CrossRefGoogle Scholar
  37. 37.
    Shigeta K, et al. Study of the serum level of thioctic acid in various diseases. J Vitaminol 1961;7:48–52.Google Scholar
  38. 38.
    Stary F, Jindal S, et al. Oxidation of alpha-lipoic acid. J Organ Chem 1975;40:58–62.CrossRefGoogle Scholar
  39. 39.
    Suzuki Y, Tsuchiya M, Packer L. Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Radicals Res Commun 1991;15:225–63.Google Scholar
  40. 40.
    Szilard S, et al. Protective effect of Legalon in workers exposed to organic solvents. Acta Med Hung 1988;45:249–56.PubMedGoogle Scholar
  41. 41.
    Takahara E, et al. Stimulatory effects of silybinin on DNA synthesis in partially hepatectomized rat livers. Non-response in hepatoma and other malignant cell lines. Biochem Pharmacol 1986;35:538–41.CrossRefGoogle Scholar
  42. 42.
    Taylor EW, Cox A, et al.. Nutrition HIV and drug abuse: the molecular basis of a unique role for selenium. J. AIDS Hum Retrovirol (in press).Google Scholar
  43. 43.
    Vogel G. The anti-Amanita effect of silymarin. In: Faulstich H, et al., eds. Amanita toxins and poisoning. Baden-Baden: Witzstrock, 1980:180–187.Google Scholar
  44. 44.
    Younossi Z, et al. Agreement in pathologic interpretation of liver biopsy specimens in posttransplant hepatitis C infection. Arch Pathol Lab Med 1999;123:143–5.PubMedGoogle Scholar
  45. 45.
    Zhang W, Ramanathan CS et al. Selenium-dependent glutathione peroxidase modules encoded by RNA viruses. Biol Trace Element Res (in press).Google Scholar
  46. 46.
    Ziegler D, Mayer P, et al. Effekte einer Therapie mit alpha-I iponsäure gegenüber Vitamin B1 bei der diabetischen Neuropathie. Diab Stoffw 1993;2:443–8.Google Scholar
  47. 47.
    Zulik R, Kassay S. The role of thioctic acid in the treatment of Amanita phylloides intoxication. In: Faulstich H, et al., eds. Amanita toxins and poisoning. Baden-Baden: Witzstrock, 1980:192–6.Google Scholar

Copyright information

© Urban & Vogel 1999

Authors and Affiliations

  1. 1.Integrative Medical Centers of New Mexico and Applied Biology (EPPWS Department)Newe Mexico State UniversityLas CrucesUSA

Personalised recommendations