Skip to main content
Log in

Selenoproteine im Knochen, Gastrointestinaltrakt und in der Schilddrüse des Menschen

Selenoproteins in human bone, intestine and thyroid

  • Published:
Medizinische Klinik Aims and scope Submit manuscript

Summary

Basis: Selenium is an essential trace element, which is incorporated as selenocysteine (secys) into specific proteins in a regulated fashion. In the presence of a hairpin loop structure within the 3′ untranslated region of the mRNA the opal stop codon UGA is coding for selenocysteine. Selenoprotein functions are dependent on secys incorporation. Members of the family of deiodinases as well as the family of glutathione peroxidases, selenoprotein P and thioredoxin reductase are selenoproteins.

Discussion: Bone, the intestine and the thyroid rely on antioxidant systems against potential cell and DNA damage through endogenous and environmental peroxides and reactive oxygen species (ROS) potentially promoting inflammation and tumorigenesis. Optimized cell defense through antioxidant selenoproteins requires optimal selenium supplementation of the organism. We have analyzed the expression of selenoproteins in these tissues, thus providing molecular tools to further elucidate optimal selenium supply on a cellular level.

Conclusion: Clinical intervention studies that focus on the development of disease must confirm the relevance of optimized selenium supply for the pathogenesis, prevention and therapy of metabolic bone disease as well as chronic (autoimmune) inflammation and tumorigenesis in the thyroid and intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Berry, M. J., L. Banu, J. W. Harney, P. R. Larsen: Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J. 12 (1993), 3315–3322.

    PubMed  CAS  Google Scholar 

  2. Brigelius Flohé, R., K. D. Aumann, H. Blocker, G. Gross, M. Kiess, K. D. Kloppel, M. Maiorino, A. Roveri, R. Schuckelt, F. Ursini, E. Wingender, L. Flohé: Phospholipid-hydroxyperoxide glutathione peroxidase. Genomic DNA, cDNA and deduced amino acid sequence. J. Biol. Chem. 269 (1994), 7342–7348.

    PubMed  Google Scholar 

  3. Burk, R. F., K. E. Hill: Selenoprotein P. A selenium-rich extracellular glycoprotein. J. Nutr. 124 (1994), 1891–1897.

    PubMed  CAS  Google Scholar 

  4. Clark, L. C., G. F. Combs, B. W. Turnbull, E. H. Slate, D. C. Chalker, J. Chow, L. S. Davis, L. A. Glover, G. F. Graham, E. G. Gross, A. Krongrad, J. L. Lesher, H. K. Park, B. B. Sanders, C. L. Smith, J. R. Taylor, for the Prevention of Cancer Study Group: Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. J. Amer. Med. Ass. 276 (1996), 1957–1963.

    Article  CAS  Google Scholar 

  5. Chu, F. F., J. H. Doroshow, R. S. Esworthy: Expression, characterization and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J. biol. Chem. 268 (1993), 2571–2576.

    PubMed  CAS  Google Scholar 

  6. Contempré, B., J. E. Dumont, J.-F. Denef, M.-C. Many: Effects of selenium deficiency on thyroid necrosis, fibrosis and proliferation: a possible role in myxoedematous cretinism. Europ. J. Endocr. 133 (1995), 99–109.

    Article  Google Scholar 

  7. Contempré, B., O. Le Moine, J. E. Dumont, J.-F. Denef, M.-C. Many: Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor b (TGFb). Molec. Cell. Endocr. 124 (1996), 7–15.

    Article  PubMed  Google Scholar 

  8. Dreher, I., C. Schmutzler, F. Jakob, J. Köhrle: Expression of Selenoproteins in various tissues and cell lines. Trace Elem. Biol. Med. 11 (1997), 83–91.

    CAS  Google Scholar 

  9. Gadeska, A., F. Howie: Cloning of the human thioredoxin reductase gene. FEBS Lett. 373 (1995), 5–9.

    Article  Google Scholar 

  10. Köhrle, J., M. Oertel, C. Hoang-Vu, F. Schnieders, G. Brabant: Type 15′-deiodinase — a marker for the differentiated thyroid carcinoma? Exp. clin. Endocr. 101 (1993), 60–72.

    Google Scholar 

  11. Köhrle, J.: Thyroid hormone deiodinases — a selenoenzyme family acting as gate keepers to thyroid hormone action. Thyroid 23 (1996), 17–30.

    Google Scholar 

  12. Mörk, H., I. Dreher, B. Lex, J. Köhrle, F. Jakob: Expression von Selenoproteinen im Gastrointestinaltrakt. Proc. 12. Jahrestagung der Gesellschaft für Mineralstoffe und Spurenelemente, Würzburg 1996, im Druck.

  13. Oster, O.: Zum Selenstatus in der Bundesrepublik Deutschland. Universitätsverlag, Jena — Frankfurt — Budapest — Den Haag — Kairo — Mailand — Moskau — Sennwald — Wien 1992.

  14. Sen, C. K., L. Packer: Antioxidant and redox regulation of gene transcription. FASEBJ. 10 (1996), 709–720.

    CAS  Google Scholar 

  15. Ursini F., M. Maiorino, R. Brigelius-Flohé, K. D. Aumann, A. Roveri, D. Schomburg, L. Flohé: Diversity of glutathione peroxidases. Meth. Enzymol. 252 (1995), 38–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, F., Mörk, H., Schütze, N. et al. Selenoproteine im Knochen, Gastrointestinaltrakt und in der Schilddrüse des Menschen. Med Klin 92 (Suppl 3), 24–26 (1997). https://doi.org/10.1007/BF03041956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041956

Key Words

Navigation