Skip to main content

Advertisement

Log in

Fushi-ka (defective apoptosis) and rheumatic autoimmune diseases: an overview on the regulation of Fas-mediated T cell apoptotic signal transduction

  • Review
  • Published:
Japanese Journal of Rheumatology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kerr JFR, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics.Br J Cancer 26: 239–257, 1972.

    CAS  PubMed  Google Scholar 

  2. Jacobson MD, Weil M, Raff MC: Programmed cell death in animal development.Cell 88: 347–354, 1997.

    CAS  PubMed  Google Scholar 

  3. Itoh N, Yonehara S, Ishii Aet al.: The polypeptide encoded by the cDNA for human cell surface antigenFas can mediate apoptosis.Cell 66: 233–243, 1991.

    CAS  PubMed  Google Scholar 

  4. Trauth BC, Klas C, Peters AMJet al.: Monoclonal antibody-mediated tumor regression by induction of apoptosis.Science 245: 301–305, 1989.

    CAS  PubMed  Google Scholar 

  5. Yonehara S, Ishii A, Yonehara M: A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor.J Exp Med 169: 1747–1756, 1989.

    CAS  PubMed  Google Scholar 

  6. Itoh N, Nagata S: A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen.J Biol Chem 2687: 10932–10937, 1993.

    Google Scholar 

  7. Watanabe-Fukunaga R, Brannan CI, Itoh Net al.: The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen.J Immunol 148: 1274–1279, 1992.

    CAS  PubMed  Google Scholar 

  8. Leithäuser F, Dhein J, Mechtersheimer Get al.: Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells.Lab Invest 69: 415–429, 1993.

    PubMed  Google Scholar 

  9. Owen-Schaub LB, Radinsky R, Kruzel Eet al.: Anti-Fas on nonhematopoietic tumors: Levels ofFas/APO-1 and bcl-2 are not predictive of biological responsiveness.Cancer Res 54: 1580–1586, 1994.

    CAS  PubMed  Google Scholar 

  10. Miyawaki T, Uehara T, Nibu Ret al.: Differential expression of apoptosis-relatedFas antigen on lymphocyte subpopulations in human peripheral blood.J Immunol 149: 3753–3758, 1992.

    CAS  PubMed  Google Scholar 

  11. Möller P, Henne C, Leithäuseret al.: Coregulation of the APO-1 antigen with intercellular adhesion molecule-1 (CD45) in tonsillar B cell and coordinate expression in follicular center B cells and in follicle center and mediastinal B-cell lymphomas.Blood 81: 2067–2075, 1993.

    PubMed  Google Scholar 

  12. Owen-Schaub LB, Yonehara S, Crump III WLet al.: DNA fragmentation and cell death is selectively triggered in activated human lymphocytes byFas antigen engagement.Cell Immunol 140: 197–205, 1992.

    CAS  PubMed  Google Scholar 

  13. Mysler E, Bini P, Drappa Jet al.: The apoptosis-1/Fas protein in human systemic lupus erythematosus.J Clin Invest 93: 1029–1034, 1994.

    CAS  PubMed  Google Scholar 

  14. Klas C, Debatin KM, Jonker RRet al.: Activation interferes with the APO-1 pathway in mature human T cells.Int Immunol 5: 625–630, 1993.

    CAS  PubMed  Google Scholar 

  15. Nishimura Y, Ishii A, Kobayashi Yet al.: Expression and function of mouse Fas antigen on immature and mature T cells.J Immunol 154: 4395–4403, 1995.

    CAS  PubMed  Google Scholar 

  16. Drappa J, Brot N, Elkon KB: The Fas protein is expressed at high levels on CD4+CD8+ thymocytes and activated mature lymphocytes in normal mice but not in the lupus-prone strain, MRLlpr/lpr.Proc Natl Acad Sci USA 90: 10340–10344, 1993.

    CAS  PubMed  Google Scholar 

  17. Singer GG, Abbas AK: TheFas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice.Immunity 1: 365–371, 1994.

    CAS  PubMed  Google Scholar 

  18. Alderson MR, Tough TW, Davis-Smith Tet al.: Fas ligand mediates activation-induced cell death in human T lymphocytes.J Exp Med 181: 71–77, 1995.

    CAS  PubMed  Google Scholar 

  19. Tucek-Szabo CL, Andjelic S, Lacy Eet al.: Surface T cell Fas receptor/CD95 regulation,in vivo activation, and apoptosis. Activation-induced death can occur without Fas receptor.J Immunol 156: 192–200, 1996.

    CAS  PubMed  Google Scholar 

  20. Cheng J, Zhou T, Liu Cet al.: Protection fromFas-mediated apoptosis by a soluble form of theFas molecule.Science 263: 1759–1762, 1994.

    CAS  PubMed  Google Scholar 

  21. Cascino I, Fiucci G, Papoff Get al.: Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing.J Immunol 154: 2706–2713, 1995.

    CAS  PubMed  Google Scholar 

  22. Seishima M, Takemura M, Saito Ket al.: Highly sensitive ELISA for soluble Fas in serum: increased soluble Fas in the elderly.Clin Chem 42: 1911–1914, 1996.

    CAS  PubMed  Google Scholar 

  23. Knipping E, Debatin KM, Stricker Ket al.: Identification of soluble APO-1 in supernatants of human B- and T-cell lines and increased serum levels in B- and T-cell leukemia.Blood 85: 1562–1569, 1995.

    CAS  PubMed  Google Scholar 

  24. Suda T, Takahashi T, Golstein Pet al.: Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family.Cell 75: 1169–1178, 1993.

    CAS  PubMed  Google Scholar 

  25. Giordano C, Stassi G, Maria RDet al.: Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto’s thyroiditis.Science 275: 960–963, 1997.

    CAS  PubMed  Google Scholar 

  26. Bellgrau D, Gold D, Selawry Het al.: A role for CD95 ligand in preventing graft rejection.Nature 377: 630–632, 1995.

    CAS  PubMed  Google Scholar 

  27. Nagata S, Golstein P: The Fas death factor.Science 267: 1449–1456, 1995.

    CAS  PubMed  Google Scholar 

  28. Suda T, Okazaki T, Naito Yet al.: Expression of the Fas ligand in cell of T cell lineage.J Immunol 154: 3806–3813, 1995.

    CAS  PubMed  Google Scholar 

  29. Arase H, Arase N, Saito T: Fas-mediated cytotoxicity by freshly isolated natural killer cells.J Exp Med 181: 1235–1238, 1995.

    CAS  PubMed  Google Scholar 

  30. Tanaka M, Suda T, Takahashi Tet al.: Expression of the functional soluble form of human Fas ligand in activated lymphocytes.EMBO J 14: 1129–1135, 1995.

    CAS  PubMed  Google Scholar 

  31. Kägi D, Vignaux F, Ledermann Bet al.: Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity.Science 265: 528–530, 1994.

    PubMed  Google Scholar 

  32. Rensing-Ehl A, Frei K, Flury Ret al.: Local Fas/APO-1 (CD95) ligand-mediated tumor cell killingin vivo.Eur J Immunol 25: 2253–2258, 1995.

    CAS  PubMed  Google Scholar 

  33. Stuart PM, Griffith TS, Usui Net al.: CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival.J Clin Invest 99: 396–402, 1997.

    CAS  PubMed  Google Scholar 

  34. Kayagaki N, Kawasaki A, Ebata Tet al.: Metalloproteinase-mediated release of human Fas ligand.J Exp Med 182: 1777–1783, 1995.

    CAS  PubMed  Google Scholar 

  35. Tanaka M, Suda T, Haze Ket al.: Fas ligand in human serum.Nature Med 2: 317–322, 1996.

    CAS  PubMed  Google Scholar 

  36. Ogasawara J, Watanabe-Fukunaga R, Adachi Met al.: Lethal effect of the anti-Fas antibody in mice.Nature 364: 806–809, 1993.

    CAS  PubMed  Google Scholar 

  37. Andrew BS, Eisenberg RA, Theofilopoulos ANet al.: Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains.J Exp Med 148: 1198–1215, 1978.

    Google Scholar 

  38. Cohen PL, Eisenberg RA:Lpr andgld: Single gene models of systemic autoimmunity and lympho-proliferative disease.Annu Rev Immunol 9: 243–269, 1991.

    CAS  PubMed  Google Scholar 

  39. Watanabe-Fukunaga R, Brannan CIet al.: Lympho-proliferation disorder in mice explained by defects inFas antigen that mediates apoptosis.Nature 356: 314–317, 1992.

    CAS  PubMed  Google Scholar 

  40. Adachi M, Watanabe-Fukunaga R, Nagata S: Aberrant transcription caused by the insertion of an early transposable element in an intron of theFas antigen gene oflpr mice.Proc Natl Acad Sci USA 90: 1756–1760, 1993.

    CAS  PubMed  Google Scholar 

  41. Matsuzawa A, Moriyama T, Kaneko Tet al.: A new allele of thelpr locus,lpr cg, that complements thegld gene in induction of lymphadenopathy in the mouse.J Exp Med 171: 519–531, 1990.

    CAS  PubMed  Google Scholar 

  42. Russell JH, Rush B, Weaver Cet al.: Mature T cells of autoimmunelpr/lpr mice have a defect in antigen-stimulated suicide.Proc Natl Acad Sci USA 90: 4409–4413, 1993.

    CAS  PubMed  Google Scholar 

  43. Seldin MF, Morse III HC, Reeves JPet al.: Genetic analysis of autoimmunegld mice. I. Identification of a restriction fragment lenght polymorphism closely linked to thegld mutation within a conserved linkage group.J Exp Med 167: 688–693, 1988.

    CAS  PubMed  Google Scholar 

  44. Takahashi T, Tanaka M, Brannan CIet al.: Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand.Cell 76: 969–976, 1994.

    CAS  PubMed  Google Scholar 

  45. Shultz LD, Coman DR, Bailey CLet al.: Viable motheaten, a new allele at the motheaten locus. I. Pathology.Am J Pathol 116: 179–192, 1984.

    CAS  PubMed  Google Scholar 

  46. Su X, Zhou T, Yang PAet al.: Hematopoietic cell protein-tyrosine phosphatase-deficient motheaten mice exhibit T cell apoptosis defect.J Immunol 156: 4198–4208, 1996.

    CAS  PubMed  Google Scholar 

  47. Sidman CL, Marshall JD, Allen RD: Murine ‘viable motheaten’ mutation reveals a gene critical to the development of both B and T lymphocytes.Proc Natl Acad Sci USA 86: 6279–6282, 1989.

    CAS  PubMed  Google Scholar 

  48. Clark EA, Shultz LD, Pollack SB: Mutations in mice that influence natural killer (NK) cell activity.Immunogenetics 12: 601–613, 1981.

    CAS  PubMed  Google Scholar 

  49. Shultz LD, Schweitzer PA, Rajan TVet al.: Mutations at the murine motheaten lucus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene.Cell 73: 1445–1454, 1993.

    CAS  PubMed  Google Scholar 

  50. Su X, Zhou T, Wang Zet al.: Defective expression of hematopoietic cell protein tyrosine phosphatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis.Immunity 2: 353–362, 1995.

    CAS  PubMed  Google Scholar 

  51. Fisher GH, Rosenberg FJH, Straus SEet al.: Dominant interferingFas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome.Cell 81: 935–946, 1995.

    CAS  PubMed  Google Scholar 

  52. Wu J, Wilson J, He Jet al.: Mountz. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease.J Clin Invest 98: 1107–1113, 1996.

    CAS  PubMed  Google Scholar 

  53. Kim PKM, Dutra AS, Chandrasekharappa SCet al.: Genomic structure and mapping of human FADD, an intracellular mediator of lymphocyte apoptosis.J Immunol 157: 5461–5466, 1996.

    CAS  PubMed  Google Scholar 

  54. Amasaki Y, Kobayashi S, Takeda Tet al.: Up-regulated expression ofFas antigen (CD95) by peripheral naive and memory T cell subsets in patients with systemic lupus erythematosus (SLE): a possible mechanism for lymphopenia.Clin Exp Immunol 99: 245–250, 1995.

    CAS  PubMed  Google Scholar 

  55. Sakata K, Sakata A, Vela-Roch Net al.: Fas (CD95)-transduced signal preferentially stimulates lupus peripheral T lymphocytes. Manuscript submitted.

  56. Emlen W, Niebur J, Kadera R: Acceleratedin vivo apoptosis of lymphocytes from patients with systemic lupus erythematosus.J Immunol 152: 3685–3692, 1994.

    CAS  PubMed  Google Scholar 

  57. Kaneko H, Saito K, Hashimoto Het al.: Preferential elimination of CD28+ T cells in systemic lupus erythematosus (SLE) and the relation with activation-induced apoptosis.Clin Exp Immunol 106: 218–229, 1996.

    CAS  PubMed  Google Scholar 

  58. Goel N, Ulrich DT, Clair EWSet al.: Lack of correlation between serum soluble Fas/APO-1 levels and autoimmune disease.Arthritis Rheum 38: 1738–1743, 1995.

    CAS  PubMed  Google Scholar 

  59. Talal N, Moutsopoulos HM, Kassan SS:Sjögren’s Syndrome. Clinical and Immunological Aspects. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  60. Ogawa N, Dang H, Kong Let al.: Lymphocyte apoptosis and apoptosis-associated gene expression in Sjögren’s syndrome.Arthritis Rheum 39: 1875–1885, 1996.

    CAS  PubMed  Google Scholar 

  61. Ichikawa Y, Arimori K, Yoshida Met al.: Abnormal expression of apoptosis-related antigens, Fas andbcl-2, on circulating T-lymphocyte subsets in primary Sjögren’s syndrome.Clin Exp Rheum 13: 307–313, 1995.

    CAS  Google Scholar 

  62. Kong L, Ogawa N, Nakabayashi Tet al.: Fas and Fas ligand expression in the salivary glands of patients with primary Sjögren’s syndrome.Arthritis Rheum 40: 87–97, 1997.

    CAS  PubMed  Google Scholar 

  63. Firestein GS, Yeo M, Zbaifler NJ: Apoptosis in rheumatoid arthritis synovium.J Clin Invest 96: 1631–1638, 1995.

    CAS  PubMed  Google Scholar 

  64. Nakajima T, Aono H, Hasunuma Tet al.: Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes.Arthritis Rheum 38: 485–491, 1995.

    CAS  PubMed  Google Scholar 

  65. Asahara H, Hasunuma T, Kobata Tet al.:In situ expression of protooncogenes and Fas/Fas ligand in rheumatic arthritis synovium.J Rheumatol 24: 430–435, 1997.

    CAS  PubMed  Google Scholar 

  66. Salmon M, Scheel-Toellner D, Huissoon AP,et al.: Inhibition of T cell apoptosis in the rheumatoid synovium.J Clin Invest 99: 439–446, 1997.

    CAS  PubMed  Google Scholar 

  67. Hoa TTM, Hasunuma T, Aono H,et al.: Novel mechanisms of selective apoptosis in synovial T cells of patients with rheumatoid arthritis.J Rheumatol 23: 1332–1337, 1996.

    CAS  PubMed  Google Scholar 

  68. Sumida T, Hoa TTM, Asahara H,et al.: T cell receptor of Fas-sensitive T cells in rheumatoid synovium.J Immunol 158: 1965–1970, 1997.

    CAS  PubMed  Google Scholar 

  69. Hayashi Y, Tamai H, Fukata S,et al.: A long term clinical, immunological, and histological follow-up study of patients with goitrous chronic lymphocytic thyroiditis.J Clin Endocrinol Metab 61: 1172–1177, 1985.

    CAS  PubMed  Google Scholar 

  70. Waksman BH, Reynolds WE: Multiple sclerosis as a disease of immune regulation.Proc Soc Exp Biol Med 175: 282–294, 1984.

    CAS  PubMed  Google Scholar 

  71. Pelfrey CM, Tranquill LR, Boehme SA,et al.: Two mechanisms of antigen-specific apoptosis of myelin basic protein (MBP)-specific T lymphocytes derived from multiple sclerosis patients and normal individuals.J Immunol 154: 6191–6202, 1995.

    CAS  PubMed  Google Scholar 

  72. Ichikawa H, Ota K, Iwata M: Increased Fas antigen on T cells in multiple sclerosis.J Neuroimmunol 71: 125–129, 1996.

    CAS  PubMed  Google Scholar 

  73. Banda NK, Bernier J, Kurahara DK,et al.: Crosslinking CD4 by human immunodeficiency virus gp 120 primes T cells for activation-induced apoptosis.J Exp Med 176: 1099–1106, 1992.

    CAS  PubMed  Google Scholar 

  74. Westendorp MO, Frank R, Ochsenbauer C,et al.: Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120.Nature 375: 497–500 1995.

    CAS  PubMed  Google Scholar 

  75. Muro-Cacho CA, Pantaleo G, Fauci AS: Analysis of Apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden.J Immunol 154: 5555–5566, 1995.

    CAS  PubMed  Google Scholar 

  76. McCloskey T, Oyaizu N, Kaplan M,et al.: Expression of the Fas antigen in patients infected with human immunodeficiency virus.Cytometry 22: 111–114, 1995.

    CAS  PubMed  Google Scholar 

  77. Haverkos HW, Drotman DP, Morgan M: Prevalence of Kaposi’s sarcoma among patients with AIDS.N Engl J Med 312: 1518, 1985.

    CAS  PubMed  Google Scholar 

  78. Mori S, Murakami-Mori K, Jewett A,et al.: Resistance of AIDS-associated Kaposi’s sarcoma cells to Fas-mediated apoptosis.Cancer Res 56: 1874–1879, 1996.

    CAS  PubMed  Google Scholar 

  79. Enari M, Hase A, Nagata S: Apoptosis by a cytosolic extract from Fas-activated cells.EMBO J 14: 5201–5208, 1995.

    CAS  PubMed  Google Scholar 

  80. Nagata S: Apoptosis by death factor.Cell 88: 355–365, 1997.

    CAS  PubMed  Google Scholar 

  81. Huang B, Eberstadt M, Olejniczak ET,et al.: NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain.Nature 384: 638–641, 1996.

    CAS  PubMed  Google Scholar 

  82. Chinnaiyan AM, O’Rourke K, Tewari M,et al.: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis.Cell 81: 505–512, 1995.

    CAS  PubMed  Google Scholar 

  83. Chinnaiyan AM, Tepper CG, Seldin MF,et al.: FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis.J Biol Chem 271: 4961–4965, 1996.

    CAS  PubMed  Google Scholar 

  84. Alnemri, ES, Fernandes-Alnemri T, Litwack G: Cloning and expression of four novel isoforms of human interleukin-1β converting enzyme with different apoptotic activities.J Biol Chem 270: 4312–4317, 1995.

    CAS  PubMed  Google Scholar 

  85. Boldin MP, Goncharov TM, Goltsev VV,et al.: Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death.Cell 85: 803–815, 1996.

    CAS  PubMed  Google Scholar 

  86. Muzio M, Chinnaiyan AM, Kischkel FC,et al.: FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex.Cell 85: 817–827, 1996.

    CAS  PubMed  Google Scholar 

  87. Thornberry NA, Bull HG, Calaycay JR,et al.: A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes.Nature 356: 768–774, 1992.

    CAS  PubMed  Google Scholar 

  88. Yuan J, Shaham S, Ledoux S,et al.: TheC. elegans cell death geneced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme.Cell 75: 641–652, 1993.

    CAS  PubMed  Google Scholar 

  89. Ayala JM, Yamin TT, Egger LA,et al.: IL-1β-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor.J Immunol 153: 2592–2599, 1994.

    CAS  PubMed  Google Scholar 

  90. Wilson KP, Black JAF, Thomson JA,et al.: Structure and mechanism of interleukin-1β converting enzyme.Nature 370: 270–275, 1994.

    CAS  PubMed  Google Scholar 

  91. Whyte M: ICE/CED-3 proteases in apoptosis.Trends Cell Biol 6: 245–248, 1996.

    CAS  PubMed  Google Scholar 

  92. Singer II, Scott S, Chin J,et al.: The interleukin-1β-converting enzyme (ICE) is localized on the external cell surface membranes, and in the cytoplasmic ground substance of human monocytes by immuno-electron microscopy.J Exp Med 182: 1447–1459, 1995.

    CAS  PubMed  Google Scholar 

  93. Miura M, Zhu H, Rotello R,et al.: Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of theC. elegans cell death geneced-3.Cell 75: 653–660, 1993.

    CAS  PubMed  Google Scholar 

  94. Tewari M, Dixit VM: Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxviruscrmA gene product.J Biol Chem 270: 3255–3260, 1995.

    CAS  PubMed  Google Scholar 

  95. Kuida K, Lippke JA, Ku G,et al.: Altered cytokine export and apoptosis in mice deficient in interleukin-1β-converting enzyme.Science 267: 2000–2003, 1995.

    CAS  PubMed  Google Scholar 

  96. Liu X, Kim CN, Pohl J,et al.: Purification and characterization of an interleukin-1β-converting enzyme family protease that activates cysteine protease p32 (CPP32).J Biol Chem 271: 13371–13376, 1996.

    CAS  PubMed  Google Scholar 

  97. Nicholson DW, Ali A, Thornberry NA,et al.: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.Nature 376: 37–43, 1995.

    CAS  PubMed  Google Scholar 

  98. Enari M, Talanian RV, Wong WW,et al.: Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis.Nature 380: 723–726, 1996.

    CAS  PubMed  Google Scholar 

  99. Fernandes-Alnemri T, Litwack G, Alnemri ES: CPP32, a novel human apoptotic protein with homology toCaenorhabditis elegans cell death proteinced-3 and mammalian, interleukin-1β-converting enzyme.J Biol Chem 269: 30761–30764, 1994.

    CAS  PubMed  Google Scholar 

  100. Alnemri ES, Livingston DJ, Nicholson DW,et al.: Human ICE/CED-3 protease nomenclature.Cell 87: 171, 1996.

    CAS  PubMed  Google Scholar 

  101. Cifone MG, Maria RD, Roncaioli P,et al.: Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase.J Exp Med 177: 1547–1552, 1993.

    Google Scholar 

  102. Barnholz Y, Roitman A, Gatt S: Enzymatic hydrosis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain.J Biol Chem 241: 3731–3737, 1966.

    CAS  PubMed  Google Scholar 

  103. Rao BG, Spence MW: Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0.J Lipid Res 17: 506–515, 1976.

    CAS  PubMed  Google Scholar 

  104. Okazaki T, Bielawska A, Domae N,et al.: Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1α, 25-dihydroxyvitamin D3-induced HL-60 cell differentiation.J Biol Chem 269: 4070–4077, 1994.

    CAS  PubMed  Google Scholar 

  105. Merrill AH, Echten GV, Wang E,et al.: Fumonisin B1 inhibits sphingosine (sphinganine)n-acyltransferase andde novo sphingolipid biosynthesis in cultured neuronsin situ.J Biol Chem 36: 27299–27306, 1993.

    Google Scholar 

  106. Spence MW, Byers DM, Palmer FBSC: A new Zn2+-stimulated sphingomyelinase in fetal bovine serum.J Biol Chem 264: 5358–5363, 1989.

    CAS  PubMed  Google Scholar 

  107. Sawai H, Okazaki T, Domae N: Ceramide: a lipid mediator of apoptotic signal transduction.Nippon Rinsho 54: 1803–1808 1996 (in Japanese).

    CAS  PubMed  Google Scholar 

  108. Bose R, Verheij M, Haimovitz-Friedman A,et al.: Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals.Cell 82: 405–414, 1995.

    CAS  PubMed  Google Scholar 

  109. Ling Y, Priebe W, Perez-Soler R: Apoptosis induced by anthracycline antibiotics in P388 parent and multidrug-resistant cells.Cancer Res 53: 1845–1852, 1993.

    CAS  PubMed  Google Scholar 

  110. Dbaibo GS, Perry DK, Gamard CJ,et al.: Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-α CrmA and Bcl-2 target distinct components in the apoptotic pathway.J Exp Med 185: 481–490, 1997.

    CAS  PubMed  Google Scholar 

  111. Mizushima N, Koike R, Kohsaka H,et al.: Ceramide induces apoptosis via CPP32 activation.FEBS Lett 395: 267–271, 1996.

    CAS  PubMed  Google Scholar 

  112. Latinis KM, Koretzky GA: Fas ligation induces apoptosis and Jun kinase activation independently of CD45 andlck in human T cells.Blood 87: 871–875, 1996.

    CAS  PubMed  Google Scholar 

  113. Wilson DJ, Fortner KA, Lynch DH,et al.: JNK, but not MAPK, activation is associated with Fasmediated apoptosis in human T cells.Eur J Immunol 26: 989–994, 1996.

    CAS  PubMed  Google Scholar 

  114. Gulbins E, Bissonnette R, Mahboubi A,et al.: Fas-induced apoptosis is mediated via a ceramide-inducedras signaling pathway.Immunity 2: 341–351, 1995.

    CAS  PubMed  Google Scholar 

  115. Maria RD, Boirivant M, Cifone MG,et al.: Functional expression ofFas andFas ligand on human lamina propria T lymphocytes.J Clin Invest 97: 316–322, 1996.

    PubMed  Google Scholar 

  116. Gill BM, Nishikata H, Chan G,et al.:Fas antigen and sphingomyelin—ceramide turnover-mediated signaling: role in life and death of T lymphocytes.Immunol Res 142: 113–125, 1994.

    CAS  Google Scholar 

  117. Chan G, Ochi A: Sphingomyelin—ceramide, turnover in CD28 costimulatory signaling.Eur J Immunol 25: 1999–2004, 1995.

    CAS  PubMed  Google Scholar 

  118. Laulederkind SJF, Bielawska A, Raghow R,et al.: Ceramide induces interleukin 6 gene expression in human fibroblasts.J Exp Med 182: 599–604, 1995.

    CAS  PubMed  Google Scholar 

  119. Nuñez G, Merino R, Grillot D,et al.: Bcl-2 and Bcl-x regulatory switches for lymphoid death and survival.Immunol Today 15: 582–588, 1994.

    PubMed  Google Scholar 

  120. Tsujimoto Y, Cossman J, Jaffe E,et al.: Involvement of thebcl-2 gene in human follicular lymphoma.Science 228: 1440–1443, 1985.

    CAS  PubMed  Google Scholar 

  121. Iwai K, Miyawaki T, Takizawa T,et al.: Differential expression ofbcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils.Blood 84: 1201–1208, 1994.

    CAS  PubMed  Google Scholar 

  122. Boise LH, Gonzalez-Garcia M, Postema CE,et al.:bcl-x, abcl-2-related gene that functions as a dominant regulator of apoptotic cell death.Cell 74: 597–608, 1993.

    CAS  PubMed  Google Scholar 

  123. Chinnaiyan AM, Orth K, O’Rourke K,et al.: Molecular ordering of the cell death pathway. Bcl-2 and Bcl-XL function upstream of theced-3-like apoptotic proteases.J Biol Chem 271: 4573–4576, 1996.

    CAS  PubMed  Google Scholar 

  124. Oltvai ZN, Milliman CL, Korsmeyer SJ:Bcl-2 heterodimerizesin vivo with a conserved homolog, bax, that accelerates programmed cell death.Cell 74: 609–619, 1993.

    CAS  PubMed  Google Scholar 

  125. Yin XM, Oltvai ZN, Korsmeyer SJ: BH1 and BH2 domains ofBcl-2 are required for inhibition of apoptosis and heterodimerization with Bax.Nature 369: 321–323, 1994.

    CAS  PubMed  Google Scholar 

  126. Takayama S, Sato T, Krajewski S,et al.: Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity.Cell 80: 279–284, 1995.

    CAS  PubMed  Google Scholar 

  127. Yang E, Zha J, Jockel J,et al.: Bad, a heterodimeric partner forbcl-XL andbcl-2 displaces bax and promotes cell death.Cell 80: 285–291, 1995.

    CAS  PubMed  Google Scholar 

  128. Chu K, Niu X, Williams LT: A Fas-associated protein factor, FAF-1, potentiates Fas-mediated apoptosis.Proc Natl Acad Sci USA 92: 11894–11898, 1995.

    CAS  PubMed  Google Scholar 

  129. Sato T, Irie S, Kitada S,et al.: FAP-1: a protein tyrosine phosphatase that associates with Fas.Science 268: 411–415, 1995.

    CAS  PubMed  Google Scholar 

  130. Maekawa K, Imagawa N, Nagamatsu M,et al.: Molecular cloning of a novel protein-tyrosine phosphatase containing a membrane-binding domain and GLGF repeats.FEBS Lett 337: 200–206, 1994.

    CAS  PubMed  Google Scholar 

  131. Fournel S, Genestier L, Robinet E,et al.: Human T cells require IL-2 but not G1/S transition to acquire susceptibility to Fas-mediated apoptosis.J Immunol 157: 4309–4315, 1996.

    CAS  PubMed  Google Scholar 

  132. Su X, Zhou T, Wang Z,et al.: Defective expression of hematopoietic cell protein tyrosine phophatase (HCP) in lymphoid cells blocks Fas-mediated apoptosis.Immunity 2: 353–362, 1995.

    CAS  PubMed  Google Scholar 

  133. Stanger BZ, Leder P, Lee TH,et al.: RIP: A novel protein, containing a death domain that interact with Fas/APO-1 (CD95) in yeast and causes cell death.Cell 81: 513–523, 1995.

    CAS  PubMed  Google Scholar 

  134. Ting AT, Pimentel-Muiños FX, Seed B: RIP mediates tumor necrosis factor receptor 1 activation of NF-kB but not Fas/APO-1-initiated apoptosis.EMBO J 15: 6189–6196, 1996.

    CAS  PubMed  Google Scholar 

  135. Tian Q, Taupin JL, Elledge S,et al.: Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis.J Exp Med 182: 865–874, 1995.

    CAS  PubMed  Google Scholar 

  136. Jain J, McCaffrey PG, Miner Z,et al.: The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun.Nature 365: 352–355, 1993.

    CAS  PubMed  Google Scholar 

  137. Alderson MR, Armitage RJ, Maraskovsky E,et al.: Fas transduces activation signals in normal human T lymphocytes.J Exp Med 178: 2231–2235, 1993.

    CAS  PubMed  Google Scholar 

  138. Owen-Schaub LB, Radinsky R, Kruzel E,et al.: Anti-Fas on nonhematopoietic tumors: Levels of Fas/APO-1 andbcl-2 are not predictive of biological responsiveness.Cancer Res 54: 1580–1586, 1994.

    CAS  PubMed  Google Scholar 

  139. Mapara JY, Bargou R, Zugck C,et al.: APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation withbcl-2 oncogene expression.Eur J Immunol 23: 702–708, 1993.

    CAS  PubMed  Google Scholar 

  140. Raziuddin S, Nur MA, Al-Wabel AA: Increased circulating HLA-DR+CD4+ T cells in systemic lupus erythematosus: alterations associated with prednisolone therapy.Scand J Immunol 31: 139–145, 1990.

    CAS  PubMed  Google Scholar 

  141. Horwitz DA, Stasny P, Ziff M: Circulating deoxyribonucleic acid-synthesizing mononuclear leukocytes. I. Increased numbers of proliferating mononuclear leukocytes in inflammatory, disease.J Lab Clin Med 76: 391–402, 1970.

    CAS  PubMed  Google Scholar 

  142. Dayal AK, Kammer GM: The T cell enigma in lupus.Arthritis Rheum 39: 23–33, 1996.

    CAS  PubMed  Google Scholar 

  143. Fujisawa K, Asahara H, Okamoto K,et al.: Therapeutic effect of the anti-Fas antibody on arthritis in HTLV-1 tax transgenic mice.J Clin Invest 98: 271–278, 1996.

    CAS  PubMed  Google Scholar 

  144. Sekigawa I, Koshino K, Hishikawa T,et al.: Inhibitory effect of the immunosuppressant FK506 on apoptotic cell death induced by HIV-1 gp120.J Clin Immunol 15: 312–317, 1995.

    CAS  PubMed  Google Scholar 

  145. Tamura K, Woo J, Murase N,et al.: Suppression of autoimmune thyroid disease by FK 506: influence on thyroid-infiltrating cells, adhesion molecule expression and anti-thyroglobulin antibody production.Clin Exp Immunol 91: 368–375, 1993.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sakata, KM., Sakata, A., Kong, L. et al. Fushi-ka (defective apoptosis) and rheumatic autoimmune diseases: an overview on the regulation of Fas-mediated T cell apoptotic signal transduction. Japanese Journal of Rheumatology 7, 211–234 (1997). https://doi.org/10.1007/BF03041325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041325

Key words

Navigation