Skip to main content

Advertisement

Log in

The 8th International Rheumatology Symposium in Tokyo Frontiers of Rheumatology

19–20 March 1999

  • Published:
Japanese Journal of Rheumatology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Darnell, JE, Jr, Kerr IM and Stark GR, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins,Science 264, 1415 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Harada H, Fujita T, Miyamoto Met al., Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of Ifn and IFN-inducible genes,Cell 58, 729 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Harada H, Kitagawa M, Tanaka Net al., Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and-2,Science 259, 971 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Harada H, Matsumoto M, Sato Met al., Regulation of IFN-α/β genes: evidence for dual function of the transcription factor complex, ISGF3 in the production and action of IFN-α/β,Genes to Cells 1, 995 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Kimura T, Kadonaga U, Harada Het al., Essential and non-redundant roles of p48 (ISGF3g) and IRF-1 in both typeI and typeII interferon responses, as revealed by gene targeting studies,Genes to Cells 1, 115 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Kimura T, Nakayama K, Penninger Jet al., Involvement of the IRF-1 transcription factor in antiviral responses to interferons,Science 264, 1921 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Matsuyama T, Kimura T, Kitagawa Met al., Targeted disruption of IRF-1 or IRF-2 results in abnormal type α IFN gene induction and aberrant lymphocyte development,Cell 75, 83 (1993).

    CAS  PubMed  Google Scholar 

  8. Miyamoto M, Fujita T, Kimura Yet al., Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elements,Cell 54, 903 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen H, Hiscott J and Pitha PM, The growing family of interferon regulatory factors,Cytokine Growth Factor Rev 8, 293 (1998).

    Article  Google Scholar 

  10. Ogasawara K, Hida S, Azimi Net al., Requirement for IRF-1 in the microenvironment supporting development of natural killer cells,Nature 391, 700 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Sato M, Tanaka N, Hata Net al., Involvement of the IRF-family transcription factor IRF-3 in virus-induced activation of the IFN-β gene,FEBS Lett. 425, 112 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Taki S, Sato T, Ogasawara Ket al., Multistage regulation of Th1-type immune responses by the transcription factor IRF-1,Immunity 6, 673 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Tamura T, Ishihara M, Lamphier MSet al., An IRF-1 dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes,Nature 376, 596 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka N, Ishihara M, Lamphier MSet al., Cooperation of the tumor suppressors IRF-1 an dp53 in response to DNA damage,Nature 382, 816 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka N, Ishihara M, Kitagawa Met al., Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1,Cell 77, 829 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Williams CL, Sever CE, Pallavicini MGet al., Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia,Science 259, 968 (1993).

    Article  Google Scholar 

References

  1. Joosten LA, Helsen MM, van de Loo FAet al., Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF alpha, anti-IL-1 alpha/beta, and IL-1 Ra,Arthritis Rheum 39, 797–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. van de Loo FA, Joosten LA, van Lent PLet al., Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect ofin situ blocking in murine antigen- and zymosan-induced arthritis,Arthritis Rheum 38, 164–172 (1995).

    Article  PubMed  Google Scholar 

  3. Ruchatz H, Leung BP, Wei XQet al., Soluble IL-15 receptor alpha-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology,J Immunol 160, 5654–5660 (1998).

    CAS  PubMed  Google Scholar 

  4. Kirkham BW, Pitzalis C, Kingsley GHet al., Rheumatoid T lymphocyte MHC class II expression:in vitro stimulation produces normal MHC class II expression, independent of proliferation,J Rheum 16, 270–275 (1989).

    CAS  PubMed  Google Scholar 

  5. Chen E, Keystone EC, Fish EN, Restricted cytokine expression in rheumatoid arthritis,Arthritis Rheum 36, 901–910 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Dolhain RJ, Ter Haar NT, Hoefakker Set al., Increased expression of interferon (IFN)-gamma together with IFN-gamma receptor in the rheumatoid synovial membrane compared with synovium of patients with osteoarthritis,Br J Rheumatol 35, 24–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Lin YL, Askonas BA, Biological properties of an influenza A virus-specific killer T cell clone. Inhibition of virus replicationin vivo and induction of delayed-type hypersensitivity reactions,J Exp Med 154, 225–234 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Kaplan D, Autocrine secretion and the physiological concentration of cytokines, [Review] [17 refs],Immunol Today 17, 303–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Verheijden GFM, Rijnders AWM, Bos Eet al., Human cartilage glycoprotein-39 as a candidate autoantigen in rheumatoid arthritis,Arthritis Rheum 40, 1115–1125 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Burmester GS, Alsalameh S, Mollenhauer J, Cellular and humoral immune response against articular chondrocytes and proteoglycans in rheumatoid arthritis,RA (1992).

  11. Isler P, Vey E, Zhang J, Dayer J, Cell surface glycproteins expressed on activated human T cells induce production of interleukin-1 beta by monocytic cells: a possible role of CD69,Eur Cytokine Netw 4, 15–23 (1993).

    CAS  PubMed  Google Scholar 

  12. Choy EHS, Adjaye J, Forrest Let al., Chimaeric anti-CD4 monoclonal antibody cross-linked by monocyte Fcγ receptor mediates apoptosis of human CD4 lymphocytes,Eur J Immunol 23, 2676–2681 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. McInnes IA, Al-Mughales J, Field Met al., The role of interleukin-15 in T cell migration and activation in rheumatoid arthritis,Nat Med 2, 175–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Postigo AA, Garcia-Vicuna R, Diaz-Gonzalez Fet al., Increased binding of synovial T lymphocytes from rheumatoid arthritis to endothelial-leukocyte adhesion molecule-1 (ELAM-1) and vascular cell adhesion molecule-1 (VCAM-1),J Clin Invest 89, 1445–1452 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Loetscher P, Uguccioni M, Bordoli Let al., CCR5 is characteristic of Th1 lymphocytes [letter],Nature 391, 344–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Koch AE, Review: angiogenesis: implications for rheumatoid arthritis [Review] [104 refs],Arthritis Rheum 41, 951–962 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Choy EHS, Connolly DJA, Kingsley GHet al., Effect of a humanised non-depleting anti-CD4 monoclonal antibody (mAb) of synovial fluid (SF) in rheumatoid arthritis,Arthritis Rheum 40, 130 (abstr.) (1997).

    Google Scholar 

  18. Moses MA, Sudhalter J, Langer R, Identification of an inhibitor of neovascularisation from cartilage,Science 248, 1408–1410 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Cawston T, Matrix metalloproteinases and TIMPs: properties and implications for the rheumatic diseases [Review] [42 refs],Mol Med Today 4, 130–137 (1998).

    Article  CAS  PubMed  Google Scholar 

Bibliography

  1. Abbas AKet al., Functional diversity of helper T lymphocytes,Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Woo P, The cytokine network in juvenile chronic arthritis,Rheum Dis Clin N Am 23, 491–498 (1997).

    Article  CAS  Google Scholar 

Bibliography

  1. Billinghurst RC, Dahlberg L, Ionescu Met al., Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage,J Clin Invest 99, 1534–1545 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Hollander AP, Heathfield TF, Webber Cet al., Increased damage to type II collagen in osteoarthritic cartilage detected by a new immunoassay,J Clin Invest 93, 1722–1732 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Hollander AP, Pidoux I, Reiner Aet al., Damage to type II collagen in ageing and osteoarthritis: starts at the articular surface, originates around chondrocytes and extends into the cartilage with progressive degeneration,J Clin Invest 96, 2859–2869 (1995).

    Article  CAS  PubMed  Google Scholar 

References

  1. Franz JK, Pap T, Müller-Ladner Uet al., T cell independent joint destruction, in:Progress in Inflammation Research, Miossec P, van den Berg WB, Firestein, GS (Eds), pp. 55–74. Birkhauser, Basel (1998).

    Google Scholar 

  2. Hummel KM, Franz JK, Petrow PKet al., Cathepsin K mRNA expression in normal synovial cells and cells from patients with rheumatoid arthritis (RA) and osteoarthritis (OA),J Rheumatol (in press).

  3. Pap T, Kuchen S, Hummel KMet al., In-situ expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) and MT3-MMP mRNA in rheumatoid arthritis (RA),Arthritis Rheum 41, S317 (1998).

    Google Scholar 

  4. Pap T, Pap G, Hummel KMet al., Membrane-type-1 matrix metalloproteinase is abundantly expressed in fibroblast and osteoclasts at the bone-implant interface of aseptically loosened joint arthroplastiesin situ, J Rheumatol 26, 166–169 (1999).

    CAS  PubMed  Google Scholar 

  5. Jorgensen C, Gay S, Gene therapy in osteoarticular diseases: where we are?Immunol Today 19, 387–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Nawrath M, Hummel KM, Pap Tet al., Effect of dominant negative mutants of RAF-1 and CMYC on rheumatoid arthritis synovial fibroblasts in the SCID mouse model,Arthritis Rheum 41 (S), S95 (1998).

    Google Scholar 

  7. Müller-Ladner U, and Gay S, The SCID mouse: a novel experimental model for gene therapy, in:Prous Science Telesymposia Proceedings: Innovative Therapies for Rheumatoid Arthritis. http://www.prous.com/ts/arthritis.html (1998).

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ochi, T. The 8th International Rheumatology Symposium in Tokyo Frontiers of Rheumatology. Japanese Journal of Rheumatology 9, 283–310 (1999). https://doi.org/10.1007/BF03041286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041286

Keywords

Navigation