Skip to main content

Advertisement

Log in

The application of shock waves in orthopedic and rheumatologic diseases

  • Mini Review
  • Published:
Japanese Journal of Rheumatology

Abstract

The article gives a mini review of the application of shock waves in orthopedics. The basic physical principles, biological effects, mechanisms of operation and results of prospective investigations in the four main indications; i.e. non-union of fractures, calcareous tendinitis, lateral epicondylitis and plantar faciitis, will be presented. Shock wave application produces microfracturing of bony tissue. This effect has been used in non-unions since the early 1990s. Depending on the level of energy used and the sort of non-union, the rate of success varies between 56 and 90% of bony union. In patients with calcifications of the rotator cuff, shock wave therapy is used as a last step before operating. Microfracturing of the deposit and a rupture of the pseudomembrane surrounding the calcification explain this effect. Disintegration of the deposit can be seen in 73% 6 weeks following shock wave therapy. Differences exist concerning the type of calcification (type 2 is better than type 1). Positive effects in chronic cases of enthesopathies (plantar fasciitis, epicondylitis) are explained by improvement in blood supply, alterations in the neuronal cell membrane and the gate control theory. In chronic cases, when other conservative therapy modalities have failed and patients are sent to surgery, positive results can be achieved in 81% (heel spur) and 69% (epicondylitis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brümmer F, Bräuner T, Hülser D, Biological effects of shock waves,World J of Urol 8, 224 (1990).

    Article  Google Scholar 

  2. Chaussy C, Eisenberger F, Jocham Det al., Die Stoßwelle. Attempto Verlag, Tübingen (1995).

    Google Scholar 

  3. Chaussy C, Eisenberger F, Jocham Det al., Stoßwellenlithotrypsie. Attempto Verlag, Tübingen (1993).

    Google Scholar 

  4. Siebert W, Buch M, in:Extracorporeal Shock Waves in Orthopaedics. Springer Verlag, Berlin (1998).

    Google Scholar 

  5. Delius Met al., Biological effects of shock waves: kidney damage by shock waves in dogs-dose dependence,Ultrasound Med Biol 14, 177–222 (1988).

    Google Scholar 

  6. Delius M, Biologische Wirkung von Stoßwellen — mehr als ‘nur’ Steinzertrümmerung?Zentralbl Chir 120, 259–273 (1995).

    PubMed  CAS  Google Scholar 

  7. Delius M, Weiss N, Tumor therapy with shock waves requires modified Lithotrypter shock waves,Naturwissenschaften 76, 573–574 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. Delius M, Denk R, Biological effects of shock waves: cavitation by shock waves in piglet liver,Ultrasound Med Biol 16, 467 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. Delius M, Enders G, Biological effects of shock waves. Lung hemorrage by shock waves in dogs — pressure dependence,Ultrasound Med Biol 13, 61 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. Delius M, Gambihler S, Sonographic imaging of extracorporal shock wave effects in the liver and galbladder of dogs,Digestion 52, 55 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. Delius M, Ueberle F, Destruction of galstones and model stones by extracorporal shock waves,Ultrasound Med Biol 20, 251 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. Delius M, Draenert K, Biological effects of shock waves:in vivo effect of high energy pulses on rabbit bone,Ultrasound Med Biol 21, 1219 (1993).

    Article  Google Scholar 

  13. Delius M, Hoffmann E, Biological effects of shock waves: induction of arrythmia in piglet hearts,Ultrasound Med Biol 20, 279 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. Seitz R, Seidl M, Steinbach Pet al., The effects of high energy shock waves on cell membranes and mitochondria, in:Proc Conf Ultrasonics Int 93, pp. 643 (1993).

  15. Steinbach P, Hofstaedter F, Determination of energy dependent extent of vascular damage caused by high energy shock waves in an umbilical cord model,Urol Res 21, 279 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. Steinbach P, Hofstaedter f,In vitro investigations on cellular damage induced by high energy shock waves,Ultrasound Med Biol 18, 691 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. Ekkernkamp A, Haupt Get al., Der Einfluß der extracorporalen Stoßwellen auf die Standardisierte Tibiafraktur am Schaf, in:Aktuelle Aspekte der Osteologie, Ril TH, Siebert HG, Mathiaß HH (Eds), p. 307, Springer Verlag, Berlin (1992).

    Google Scholar 

  18. Jacobson B, Webster JG,Medicine and Clinical Engineering, Prentice Hall, Eaglewood Cliff, NJ (1977).

    Google Scholar 

  19. Graff J,Die Wirkung hochenergetischer Stoßwellen auf Knochen-und Weichteilgewebe. Habilitationsschrift Bochum (1989).

  20. Johannes E, Dinesh Eet al., High energy shock waves for the treatment of non-unions: an experiment on dogs,J Surg Res 57, 246 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. Rompe JD, Stoßwellentherapie: Therapeutische Wirkung bei spekulativem Mechanismus,Z Orthop 143, 3–19 (1996).

    Google Scholar 

  22. Rompe JD, Hopf C, Rumler F, 2 Jahre extrakorporale Stoßwellentherapie in der Orthopädie-Indikationen und Resultate?Orthopädie Mitteilungen 3, 173 (1994).

    Google Scholar 

  23. Jerome CP, McCullough DL, Effects of shock waves on the structure and growth of the immature rat epiphysis,J Urology 141, 670–674 (1989).

    Google Scholar 

  24. Graff J, Richter K D, Wirkung von hochenergetischen Stoßwellen auf Knochengewebe, (Abstract),Urol Res 16, 252 (1988).

    Google Scholar 

  25. Vachalnov V, Michailov P, High energy shock waves in treatment of delayed and nonunion of fractures,Int Orthop (SICOT) 15, 181–184 (1991).

    Google Scholar 

  26. Constant CR, A clinical method of functional assessment of the shoulder,Clin Orthop 214, 160 (1987).

    PubMed  Google Scholar 

  27. Loew M, Jurgowski W, Erste Erfahrungen mit der Extrakorporalen Stoßwellenlithotrypsie in der Behandlung der Tendinosis calcarea der Schulter,Z Orthop 131, 470–473 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. Loew M, Jurgowski W, Thomsen M, Die Wirkung extracorporaler Stoßwellen auf die Tendinosis calcarea der Schulter,Urologe (A) 34, 49–53 (1995).

    CAS  Google Scholar 

  29. Rompe JD, Rumler F, Hopf Cet al., Extracorporal shock wave therapy for calcifying tendinitis of the shoulder,Clin Orthop Rel Res 321, 196 (1995).

    Google Scholar 

  30. Haist J, Steeger D, Die ESWT der Epikondylopathia radialis et ulnaris. Ein neues Behandlungskonzept knochennaher Weichteilschmerzen,Orthopädie Mitteilungen 3, 173 (1994).

    Google Scholar 

  31. Rompe JD, Hopf C, Küllmer Ket al., Low energy extracorporal shock wave therapy for persistent tennis elbow,Int Orthop (SICOT) 20, 23–27 (1996).

    Article  CAS  Google Scholar 

  32. Rompe JD, Hopf C, Küllmer Ket al., Analgesic effect of extracorporal shock wave therapy on chronic tennis elbow,J Bone Joint Surg 78, 233 (1996).

    CAS  Google Scholar 

  33. Rompe JD, Hopf C, Nafe Bet al., Low energy extracorporal shock wave therapy for painful heel: a prospective controlled single blind study,Arch Orthop Trauma Surg 115, 75–79 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. Delius M, Hofschneider P, Extracorporal shock waves for gene therapy?Lancet 345, 1377 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. Roles N, Maudsley R, Radial tunnel syndrome,J. Bone Joint Surg 54B (3), 499 (1972).

    Google Scholar 

  36. Rompe JD, Hopf C, Küllmer K,et al., Extracorporale Stoßwellentherapie der Epikondylopathia humeri radialis — ein alternatives Behandlungskonzept,Z Orthop 134, 63 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. Seidl M, Steinbach Pet al., Induction of stress fibers and intercellular gaps in human vascular endothelium by shock waves,Ultrasonics 32, 397–400 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. Seidl M, Steinbach P, Shock wave induced endothelial damage —in situ analysis by confocal laser scanning microscopy,Ultrasound Med Biol 20, 571 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Buch, M., Siebert, W.E. The application of shock waves in orthopedic and rheumatologic diseases. Japanese Journal of Rheumatology 9, 209–218 (1999). https://doi.org/10.1007/BF03041278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041278

Key words

Navigation