Advertisement

Advances in Applied Clifford Algebras

, Volume 7, Issue 2, pp 133–139 | Cite as

The cross ratio and Clifford algebras

  • Jan Cieśliński
Papers

Abstract

Motivated by recent quaternionic approach of Bobenko and Pinkall to the complex cross ratio we presenta simple method to eva]uate the cross ratio in the Euclidean space n identifying the space with vectors generating the Clifford algebraC(n). We apply the Clifford cross ratio to describe discrete analogues of orthogonal nets in n .

1991 Mathematics Subject Classification

Primary 15A66 Secondary 52C07 51N20 

Key words

Cross ratio Clifford algebra conformal invaxiants orthogonal coordinates Lamé equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ablowitz M. J., H. Segur.,Solitons and the Inverse Scattering Transform, SIAM, Philadelphia 1981.zbMATHGoogle Scholar
  2. [2]
    Bobenko A., “Discrete Conformal Maps and Surfaces”, [in:]Symmetries and Integrability of Difference Equations II, edited by P. A. Clarkson, F. Nijhoff, Cambridge Univ. Press. 1997.Google Scholar
  3. [3]
    Bobenko A., U. Pinkall, “Discrete Surfaces with constant Negative Gaussian Curvature and the Hirota Equation”,J. Diff. Geom. 43 (1996) 527–611.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Bobenko A., U. Pinkall, “Discrete Isothermic Surfaces”,J. reine angew. Math. 475 (1996) 187–208.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Chevalley C. C.,The algebraic theory of spinors, New York 1955.Google Scholar
  6. [6]
    Cieśliński J., “The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the soliton approach”,Diff. Geom. Appl. 7 (1997) 1–28.zbMATHCrossRefGoogle Scholar
  7. [7]
    Cieśliński J., “A generalized formula for integrable classes of surfaces in Lie algebras”,J. Math. Phys. 38 (1997) 4255–4272.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. [8]
    Cieśliński J., “The Bäcklund transformation for discrete isothermic surfaces”, [in:]Symmetries and Integrability of Difference Equations II, edited by P. A. Clarkson, F. Nijhoff, Cambridge Univ. Press. 1997.Google Scholar
  9. [9]
    Cieśliński J., “The spectral interpretation ofn-spaces of constant negative curvature immersed inR 2n−1”, to be published.Google Scholar
  10. [10]
    Cieśliński J., A. Doliwa, P. M. Santini, “The Integrable Discrete Analogues of Orthogonal Coordinate Systems are Multidimensional Circular Lattices”,Phys. Lett. A 235 (1997) 480–488.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Doliwa A., “Integrable Discrete Geometry with Ruler and Compass”, [in:]Symmetries and Integrability of Difference Equations II, edited by P. A. Clarkson, F. Nijhoff, Cambridge Univ. Press. 1997.Google Scholar
  12. [12]
    Doliwa A., P. M. Santini, “Multidimensional quadrilateral lattices are integrable”,Phys. Lett. A 233 (1997) 365–372.zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    Eisenhart L. P.,A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., Boston 1909 (Dover, New York 1960)Google Scholar
  14. [14]
    Hertrich-Jeromin U., T. Hoffmann, U. Pinkall, “A discrete version of the Darboux transform for isothermic surfaces”,SfB288 preprint No. 239, Berlin 1996.Google Scholar
  15. [15]
    Sauer A.,Differenzengeometrie, Springer, Berlin 1970 [in German].zbMATHGoogle Scholar
  16. [16]
    Sym A., “Soliton surfaces and their applications”, [in:]Geometric Aspects of the Einstein Equations and Integrable Systems (Lect. Notes in Phys.239), ed. R. Martini, pp. 154–231, Springer-Verlag, Berlin 1985.CrossRefGoogle Scholar

Copyright information

© Birkhäuser-Verlag AG 1997

Authors and Affiliations

  1. 1.Instytut FizykiUniwersytet w BialymstokuBialystokPoland

Personalised recommendations