Skip to main content
Log in

Genetic factors in assisted reproduction

Genetische Faktoren in der Reproduktionsmedizin

  • Review Article
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Ob die Anwendung der Reproduktionsmedizin zu einer erhöhten Anzahl von Kindern mit angeborenen Missbildungen führt, ist bis dato nicht gesichert. Die Schwierigke it besteht vor allem darin, etwaige Missbildungen, die durch die Techniken der Reproduktionsmedizin entstanden sein könnten, von jenen zu unterscheiden, die durch das erhöhte genetische Hintergrundrisiko von Infertilitätspatienten erklärbar sind. Vom genetischen Standpunkt sind Infertilitätspatienten nämlich als Hochrisikokollektiv einzustufen. Bei diesen beträgt die Prävalenz von numerischen Chromosomenaberrationen rund 10% im Vergleich zu 0,85% in der Allgemeinbevölkerung. Strukturelle Chromosomenaberrationen kommen in der Allgemeinbevölkerung zu rund 0,1% vor; bei IVF-Patienten jedoch bis zu 1%. Daneben sind Mikrodeletionen am Y-Chromosom und Mutationen im CFTR-Gen Infertilitätsgründe, die der Reproduktionsmediziner in seinem Klientel antreffen kann. Genetische Beratung und gegebenenfalls genetische Untersuchungen sollten daher routinemäßig bei Infertilitätspatienten durchgeführt werden. Zukünftige Eltern sollten außerdem aufgeklärt werden, dass verschiedene paternale und maternale Gendefekte an das mit den Methoden der assistierte Reproduktion gezeugte Kind übertragen werden können, während dasselbe Kind auf natürlichem Weg vermutlich nie empfangen worden wäre.

Summary

It is still unclear whether the procedures of assisted reproduction increase the risk of congenital malformations. Thus, it remains to be clarified whether an increased risk, if any, of congenital malformations in these children is caused by the procedure of assisted reproduction itself or by the underlying maternal and paternal background. From the genetic point of view, infertility patients seeking assisted reproduction have to be classified as a high-risk group. The prevalence of numerical chromosomal abnormalities is around 10% in these patients, compared with 0.85% in the general population. The prevalence of structural chromosomal abnormalities is around 0.1% in the general population and is increased up to 1% in patients seeking assisted reproduction. In addition, patients with microdeletions of the Y-chromosome or mutations in the cystic fibrosis transmembrane-conductance regulator gene are likely to be encountered at the fertility clinic. Therefore, genetic screening and counselling should be routinely offered to infertility patients. They also need to understand that parental factors can be transferred to offspring that would most likely not have been conceived by natural means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Strohmer H, Obruca A, Feichtinger W (1993) Micromanipulation of human gametes within the scope of assisted reproduction. Wien Klin Wochenschrift 105: 704–707

    CAS  Google Scholar 

  2. Ericson A, Kallen B (2001) Congenital malformations in infants born after IVF: a population-based study. Hum Reprod 16: 504–509

    Article  PubMed  CAS  Google Scholar 

  3. Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE (2003) Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet 361: 309–310

    Article  PubMed  Google Scholar 

  4. Bonduelle M, Ponjaert I, Steirteghem AV, Derde MP, Devroey P, Liebaers I (2003) Developmental outcome at 2 years of age for children born after ICSI compared with children born after IVF. Hum Reprod 18: 342–350

    Article  PubMed  CAS  Google Scholar 

  5. Anthony S, Buitendijk SE, Dorrepaal CA, Lindner K, Braat DD, den Ouden AL (2002) Congenital malformations in 4224 children conceived after IVF. Hum Reprod 17: 2089–2095

    Article  PubMed  CAS  Google Scholar 

  6. Vogt PH, Edelmann A, Kirsch S, Henegariu O, Hirschmann P, Kiesewetter F, et al (1996) Human Y-chromosome azoospermia factor (AZF) mapped to different subregions in Yq11. Hum Mol Genet 5: 933–943

    Article  PubMed  CAS  Google Scholar 

  7. Kent-First M, Muallem A, Shultz J, Pryor J, Roberts K, Nolten W, et al (1999) Defining regions of the Y-chromosome responsible for male infertility and identification of a fourth AZF region (AZFd) by Y-chromosome microdeletion detection. Mol Reprod Dev 53: 27–41

    Article  PubMed  CAS  Google Scholar 

  8. Foresta C, Moro E, Ferlin A (2001) Y chromosome microdeletions and alterations of spermatogenesis. Endocr Rev 22: 226–239

    Article  PubMed  CAS  Google Scholar 

  9. Kim SW, Kim KD, Paick JS (1999) Microdeletions within the azoospermia factor subregions of the Y chromosome in patients with idiopathic azoospermia. Fertil Steril 72: 349–353

    Article  PubMed  CAS  Google Scholar 

  10. Kerr N, Zhang J, Sin F, Benny P, Sin IL (2000) Frequency of microdeletions in the azoospermia factor region of the Y-chromosome of New Zealand men. N Zealand J Med 113: 468–470

    CAS  Google Scholar 

  11. Peterlin B, Kunej T, Sinkovec J, Gligorievska N, Zorn B (2002) Screening for Y chromosome microdeletions in 226 Slovenian subfertile men. Hum Reprod 17: 17–24

    Article  PubMed  CAS  Google Scholar 

  12. Maurer B, Gromoll J, Simoni M, Nieschlag E (2001) Prevalence of Y chromosome microdeletions in infertile men who consulted a tertiary care medical centre: the Munster experience. Andrologia 33: 27–33

    Article  PubMed  CAS  Google Scholar 

  13. Tzschach A, Thamm B, Imthurn B, Weber W, Alexander H, Glander HJ, et al (2001) Absence of Yq microdeletions in infertile men. Arch Androl 47: 167–171

    Article  PubMed  CAS  Google Scholar 

  14. Gruber C, Hengstschläger M, Wieser F, Gruber DM, Walch K, Gruber IML, et al (2003) Absence of microdeletions in the azoospermia factor region of the Y-chromosome in Viennese men seeking assisted reproduction. Wien Klin Wochenschrift 115: 831–834

    Article  Google Scholar 

  15. van Golde RJ, Wetzels AM, de Graaf R, Tuerlings JH, Braat DD, Kremer JA (2001) Decreased fertilization rate and embryo quality after ICSI in oligozoospermic men with microdeletions in the azoospermia factor c region of the Y chromosome. Hum Reprod 16: 289–292

    Article  PubMed  Google Scholar 

  16. Mulhall JP, Reijo R, Alagappan R, Brown L, Page D, Carson R, et al (1997) Azoospermic men with deletion of the DAZ gene cluster are capable of completeing spermato genesis: fertilisation, normal embryonic development and pregnancy occur when retrieved testicular spermatozoa are used for intracytplasmic sperm injection. Hum Reprod 12: 503–508

    Article  PubMed  CAS  Google Scholar 

  17. McCallum TJ, Milunsky JM, Cunningham DL, Harris DH, Maher TA, Oates RD (2000) Fertility in men with cystic fibrosis: an update on current surgical practices and outcomes. Chest 118: 1059–1062

    Article  PubMed  CAS  Google Scholar 

  18. Meschede D, Dworniczak B, Behre HM, Kliesch S, Claustres M, Nieschlag E, et al (1997) CFTR gene mutations in men with bilateral ejaculatory-duct obstruction and anomalies of the seminal vesicles. Am J Hum Genet 32: 1200–1202

    Article  Google Scholar 

  19. Silber SJ, Nagy ZP, Liu J, Godoy H, Devroey P, van Steirteghem AC (1994) Conventional in-vitro fertilization versus intracytoplasmic sperm injection for patients requiring microsurgical sperm aspiration. Hum Reprod 32: 1705–1709

    Google Scholar 

  20. Welsh MJ, Tsui LC, Boat TF, Beaudet AL (1995) Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New York, pp 3799–3876

    Google Scholar 

  21. Rubio C, Simon C, Vidal F, Rodrigo L, Pehlivan T, Remohi J, et al (2003) Chromosomal abnormalities and embryo development in recurrent miscarriage couples. Hum Reprod 18: 182–188

    Article  PubMed  CAS  Google Scholar 

  22. Nicolaidis P, Petersen MB (1998) Origin and mechanisms of nondisjunction in human autosomal trisomies. Hum Reprod 13: 311–319

    Article  Google Scholar 

  23. Harari O, Bourne H, Baker G, Gronow M, Johnston I (1995) High fertilization rate with intracytoplasmic sperm injection in mosaic Klinefelter’s syndrome. Fertil Steril 63: 182–184

    PubMed  CAS  Google Scholar 

  24. Kitamura M, Matsumiya K, Koga M, Nishimura K, Miura H, Tsuji T, et al (2000) Ejaculated spermatozoa in patients with non-mosaic Klinefelter’s syndrome. Int J Urol 7: 88–92

    Article  PubMed  CAS  Google Scholar 

  25. Moosani N, Chernos J, Brian Lowry R, Martin RH, Rademaker A (1999) A 47, XXY fetus resulting from ICSI in an man with an elevated frequency of XY spermatozoa. Hum Reprod 14: 1137

    Article  PubMed  CAS  Google Scholar 

  26. Birkebaek NH, Cruger D, Hansen J, Nielsen J, Bruun-Petesen G (2002) Fertility and pregnancy outcome in Danish women with Turner syndrome. Clin Genet 61: 35–39

    Article  PubMed  CAS  Google Scholar 

  27. Eblen AC, Nakajima ST (2003) Spontaneous pregnancy in a woman with 45,X/47,XXX mosaicism in both serum and germ cell lines. A case report. J Reprod Med 48: 121–123

    PubMed  Google Scholar 

  28. Neri G (1984) A possible explanation for the low incidence of gonosomal aneuploidy among the offspring of triplo-X individuals. Am J Med Genet 18: 357–364

    Article  PubMed  CAS  Google Scholar 

  29. Bonduelle M, Aytoz A, Van Assche E, Devroey P, Liebaers I, Van Steirteghem A (1998) Incidence of chromosomal aberrations in children born after assisted reproduction through intracytoplasmic sperm injection. Hum Reprod 13: 781–782

    Article  PubMed  CAS  Google Scholar 

  30. Minto CL, Liao KL, Conway GS, Creighton SM (2003) Sexual function in women with complete androgen insensitivity syndrome. Fertil Steril 80: 157–164

    Article  PubMed  Google Scholar 

  31. Hardelin JP (2001) Kallmann syndrome: towards molecular pathogenesis. Mol Cell Endocrinol 179: 75–81

    Article  PubMed  CAS  Google Scholar 

  32. Cayan S, Conaghan J, Schriock ED, Ryan IP, Black LD, Turek PJ (2001) Birth after intracytoplasmic sperm injection with use of testicular sperm from men with Kartagener/immotile cilia syndrome. Fertil Steril 76: 612–614

    Article  PubMed  CAS  Google Scholar 

  33. Saenger P (2002) Editorial: Noonan syndrome — certitude replaces conjecture. J Clin Endocrinol Metab 87: 3527–3528

    Article  PubMed  CAS  Google Scholar 

  34. Zuffardi O, Tiepolo L (1982) Frequencies and types of chromosome abnormalities associated with human male infertility. In: Crosignani PG, Rubin BL (eds) Genetic control of gamete production and function. Academic Press, New York, pp 261–273

    Google Scholar 

  35. Jacobs PA (1992) The chromosome complement of human gametes. Oxford Rev Reprod Biol 14: 47–72

    CAS  Google Scholar 

  36. Olson SD, Magenis RE (1988) Preferential paternal origin of de novo structural rearrangments. In: Daniel A (ed) The cytogenetics of mammalian autosomal rearrangements. Alan R. Liss, New York, pp 583–599

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian J. Gruber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, C.J., Hengstschläger, M., Leipold, H. et al. Genetic factors in assisted reproduction. Wien Klin Wochenschr 115, 805–811 (2003). https://doi.org/10.1007/BF03041040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041040

Schlüsselwörter

Key words

Navigation