Skip to main content
Log in

Cholesterol improves the utilization of parenteral lipid emulsions

Cholesterin verbessert die Verwertung von Fettemulsionen für die künstliche Ernährung

  • Original Article
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Fettemulsionen sind eine unverzichtbare Komponente der parenteralen Ernährung geworden. Derzeit verfügbare Emulsionen haben eine weitgehend identische Zusammensetzung aus Pflanzenölen und Eigelb-Phospholipiden als Emulgator. Frühere Versuche, die Zusammensetzung zu optimieren, haben sich weitgehend auf die Triglyzeridzusammensetzung fokussiert. Als erste grundsätzliche Änderung ihrer Zusammensetzung seit ihrer Einführung in die klinische Medizin haben wir eine Emulsion untersucht, die als Zusatz freies Cholesterin enthält.

Bei 10 gesunden männlichen normolipämischen Freiwilligen haben wir die Elimination, Hydrolyse und die Fettoxydation (gemessen mittels indirekter Kalorimetrie) unter Infusion einer herkömmlichen Fettemulsion (20% Triglyzeride) gegenüber einer sonst identischen Emulsion, der ex ovo 4 g/l freies Cholesterin zugesetzt wurde, verglichen.

Unter Infusion der Cholesterin-hältigen Fettemulsion war der Anstieg der Plasmatriglyzeride vermindert (323,8±27,5 vs. 202,0±18,9 mg·dL−1, p<0,001), die Eliminationshalbwertszeit der Triglyzeride verkürzt (41,6±5,4 vs. 29,3±5,1 min, p<0,05), und die Gesamtkörper-clearance erhöht (0,96±0,1 vs. 1,52±0,2 ml·b.w.·min−1, p<0,02). Auch war der Anstieg der Freien Fettsäuren (400,7±39,0 vs. 532,2±64,0 μmol·L−1; p<0,02) und der Ketonkörper (β-hydroxy Butyrat) (151,6±37,0 vs. 226,3±33,01 μmol·L−1; p<0,02) im Plasma erhöht, der Anstieg von Insulin und Glukagon vermindert (p<0,05). Ebenso war unter Infusion der modifizierten Emulsion der Abfall des respiratorischen Quotienten ausgeprägter und der Anteil der Fett-Oxydation am Gesamtkörperenergie-umsatz gesteigert (66,2%±6,0 vs. 70,9%±6,3, p<0,05). Eine Beeinträchtigung des Gasaustausches oder andere Nebenwirkungen konnten nicht nachgewiesen werden.

Zusammenfassend zeigen diese Ergebnisse, dass die Elimination einer Cholesterin-supplementierten Fettemulsion für die parenterale Ernährung beschleunigt, die Triglyzerid-Hydrolyse gesteigert und die Fettoxydation erhöht ist. Dies bedeutet, dass der Zusatz von Cholesterin zu einer Fettemulsion nicht nur eine Möglichkeit bietet, das möglicherwiese bei akutkranken Patienten krankheitsbedingt essentiell werdende Cholesterin zuzuführen, sondern auch, dass dies hilft, künstlichen Fettpartikeln eine Chylomikron-ähnlichere Struktur zu geben und dadurch die Fett-Verwertung zu verbessern.

Summary

Lipid emulsions have become an indispensable component of parenteral nutrition. Commercially available emulsions mostly have an identical composition of triglycerides (from plant oils) and egg-yolk phospholipids as emulsifier. Previous attempts to improve the composition of lipid emulsions have focused mainly on the triglyceride moiety. In the first fundamental modification of a lipid emulsion since their broader introduction into clinical medicine, we included free cholesterol in a lipid emulsion.

We evaluated elimination and hydrolysis of triglycerdes and lipid oxidation (by indirect calorimetry) in 10 healthy male normolipemic volunteers, comparing a conventional lipid emulsion (20% triglycerides) with an otherwise identical emulsion with the addition of 4 g/l free cholesterol.

The rise in plasma triglycerides was mitigated during infusion of the cholesterol-enriched solution (323.8±27.5 vs. 202.0±18.9 mg·dL−1, p<0.001), plasma half-life was reduced (41.6±5.4 vs. 29.3±5.1 min, p<0.05), and total-body clearance was enhanced (0.96±0.1 vs. 1.52±0.2 ml·b.w.·min−1, p<0.02). The rise in plasma free fatty acids (400.7±39.0 vs. 532.2±64.0 μmol·L−1; p<0.02) and ketone bodies (β-hydroxybutyrate) (151.6±37.0 vs. 226.3±33.01 μmol·L−1; p<0.02) was augmented. Increases in plasma insulin and glucagon were less pronounced (p<0.05). The fall in respiratory quotient was greater and the fraction of lipid oxidation as a percentage of total energy expenditure was increased (66.2%±6.0 vs. 70.9%±6.3, p<0.05) during infusion of the modified solution. No impairment of gas exchange or other side effects were observed.

Taken together these results indicate that the elimination of a cholesterol-supplemented lipid emulsion is accelerated, triglyceride hydrolysis is enhanced, and lipid oxidation is augmented. Thus, addition of cholesterol to a lipid emulsion might not only present a means of providing cholesterol in parenteral nutrition but also help to reshape artificial lipid particles to a more chylomicronresembling composition and improve lipid utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adolph M (1999) Lipid emulsions in parenteral nutrition. Ann Nutr Metab 43: 1–13

    Article  PubMed  CAS  Google Scholar 

  2. Schuberth O, Wretlind A (1961) Intravenous infusion of fat emulsion and phosphatides and emulsifying agents. Acta Chir Scand [Suppl] 278: 1–21

    CAS  Google Scholar 

  3. Hallberg D, Holm I, Obel AL, Schuberth O, Wretlind A (1967) Fat emulsions for complete intravenous nutrition. Postgrad Med J 43: 307–316

    Article  PubMed  CAS  Google Scholar 

  4. Wretlind A (1981) Development of fat emulsions. J Parent Ent Nutr 5: 230–235

    Article  CAS  Google Scholar 

  5. Carpentier YA, Dupont IE (2000) Advances in intravenous lipid emulsions. World J Surg 24: 1493–1497

    Article  PubMed  CAS  Google Scholar 

  6. Ok E, Yilmaz Z, Karakucuk I, Akgun H, Sahin H (2003) Use of olive oil based emulsions as an alternative to soybean oil based emulsions in total parenteral nutrition and their effects on liver regeneration following hepatic resection in rats. Ann Nutr Metab 47: 221–227

    Article  PubMed  CAS  Google Scholar 

  7. Yeh SL, Chen WJ, Huang PC (1996) Effects of fish oil and safflower oil emulsions on diet induced heaptic steatosis in rats receiving total parenteral nutrition. Clin Nutr 15: 80–83

    Article  PubMed  CAS  Google Scholar 

  8. Bach AC, Storck D, Meraihi Z (1988) Medium-chain triglyceride-based fat emulsions: an alternative energy supply in stress and sepsis. JPEN J Parenter Enteral Nutr 12: 82S-88S

    PubMed  CAS  Google Scholar 

  9. Kruimel JW, Naber TH, van der Vliet JA, Carneheim C, Katan MB, Jansen JB (2001) Parenteral structured triglyceride emulsion improves nitrogen balance and is cleared faster from the blood in moderately catabolic patients. JPEN J Parenter Enteral Nutr 25: 237–244

    Article  PubMed  CAS  Google Scholar 

  10. Sandstrom R, Hyltander A, Korner U, Lundholm K (1993) Structured triglycerides to postoperative patients: a safety and tolerance study. JPEN J Parenter Enteral Nutr 17: 153–157

    Article  PubMed  CAS  Google Scholar 

  11. Mayer K, Gokorsch S, Fegbeutel C, Hattar K, Rosseau S, Walmrath D, Seeger W, Grimminger F (2003) Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis. Am J Respir Crit Care Med 167: 1321–1328

    Article  PubMed  Google Scholar 

  12. Ferranini E (1988) The theoretical basis of indirect calorimetry: a review. Metabolism 37: 287–301

    Article  Google Scholar 

  13. Frain KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55: 628–634

    Google Scholar 

  14. Okabe H, Uji Y, Nagashima K, Noma A (1980) Enzymic determination of free fatty acids in serum. Clin Chem 26: 1540–1543

    PubMed  CAS  Google Scholar 

  15. Bergmeyer HU, Bernt E (1965) Enzymatic assay of ketone bodies in blood. Enzymol Biol Clin 5: 65–76

    CAS  Google Scholar 

  16. Eggstein M, Kuhlmann E (1974) Enzymatic assay of glycerol. In: Bergmayer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Weinheim, pp 1825–1831

    Google Scholar 

  17. Porstmann T, Kiessig ST (1992) Enzyme immunoassay. An overview. J Immunolog Meth 150: 5–21

    Article  CAS  Google Scholar 

  18. Heinzel G, Woloszcak R, Thomann P (1993) TOPFIT 2.0: pharmacokinetic and pharmacodynamic data analysis system. Fischer. Stuttgart

    Google Scholar 

  19. Roberts RM (1989) Serendipidity — accidental discoveries in science. Wiley, New York

    Google Scholar 

  20. Fielding CJ (1970) Human lipoprotein lipase inhibition of activity by cholesterol. Biochim Biophys Acta 218: 221–226

    CAS  Google Scholar 

  21. Rössner S, Vessby B (1977) Fat emulsions with added free cholesterol or fatty acid cholesteryl esters. Nutr Metab 21: 349–357

    Article  PubMed  Google Scholar 

  22. Geyer RP (1960) Parenteral nutrition. Phys Reviews 40: 150–186

    CAS  Google Scholar 

  23. McKibbin JM, Ferry RM, Stare FJ (1946) Parenteral nutrition. II. Utilization of emulsified fat given intravenously. J Clin Invest 25: 679–686

    Article  PubMed  CAS  Google Scholar 

  24. Via DP, Craig IF, Jacobs GW, Van Winkle B, Charlton SC, Gott AM, Smith LC (1982) Cholesteryl ester-rich microemulsions: stable protein analogs of low desitity lipoproteins. J Lipid Res 23: 570–576

    PubMed  CAS  Google Scholar 

  25. Reisinger RE, Atkinson D (1990) Phospholipid/cholesteryl ester microemulsions containing unesterified cholesterol: model systems for low density lipoproteins. J Lipid Res 31: 849–858

    PubMed  CAS  Google Scholar 

  26. Miller KW, Small DM (1983) Triolein-cholesteryl oleatecholesterol-lecithin emulsions: structural models of triglyceride-rich lipoproteins. Biochemistry 22: 443–451

    Article  PubMed  CAS  Google Scholar 

  27. Redgrave TG, Maranhao RC (1985) Metabolism of protein-free lipid emulsion models of chylomicrons in rats. Biochim Biophys Acta 835: 104–112

    PubMed  CAS  Google Scholar 

  28. Nakandakare ER, Lottenberg SA, Oliveira HCF, Bertolami MC, Vasconcelos KS, Sperotto G, Quintao ECR (1994) Simultameous measurements of chylomicron lipolysis and remnant removal using doubly labled artificial lipid emulsion: studies in normolipidemic nd hyperlipidemic subjects. J Lipid Res 35: 143–152

    PubMed  CAS  Google Scholar 

  29. Vuaridel-Bonanomi ES, Weder HG (1991) The use of liposomes for the preparation of protein ree lipid emulsions models of chylomicron remnants. J Microencapsul 8: 203–214

    Article  PubMed  CAS  Google Scholar 

  30. Redgrave TG, Vassiliou GG, Callow MJ (1987) Cholesterol is necessary for triacylglycerol-phospholipid emulsions to mimic metabolism of lipoproteins. Biochim Biophys Act 921: 154–157

    CAS  Google Scholar 

  31. Maranhao RC, Tercyak AM, Redgrave TG (1986) Effects of cholesterol content on the metabolism of protein-free emulsion models of lipoproteins. Biochim Biophys Acta 875: 247–255

    PubMed  CAS  Google Scholar 

  32. Redgrave TG, Ly HL, Quinato CR, Ramberg CF, Boston RC (1993) Clearance from plasma of triglycerol and cholesteryl esters after intravenous injection of chylomicron-like lipid emulsions in rats and man. Biochem J 290: 843–847

    PubMed  CAS  Google Scholar 

  33. Mortimer BC, Tso P, Phan CT, Bveridge DJ, Wen J, Redgrave TG (1995) Features of cholesterol structure that regulate the clearance of chylomicron-like lipid emulsions. J Lipid Res 36: 2038–2053

    PubMed  CAS  Google Scholar 

  34. Martins IJ, Vilcheze C, Mortimer BC, Bittman R, Redgrave TG (1998) Sterol side chain length and structure affetcs the clearance of chylomicron-like lipid emulsions in rats and mice. J Lipid Res 39: 302–312

    PubMed  CAS  Google Scholar 

  35. Santos RD, Hueb W, Oliveira AA, Ramires JA, Maranhao RC (2003) Plasma kinetics of a cholesterol-rich emulsion in subjects with or without coronary artery disease. J Lipid Res 44: 464–469

    Article  PubMed  CAS  Google Scholar 

  36. Rodrigues DG, Covolan CC, Coradi ST, Barboza R, Maranhao RC (2002) Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J Pharm Pharmacol 54: 765–772

    Article  PubMed  CAS  Google Scholar 

  37. Read TE, Grunfeld C, Kumwenda ZL, Calhoun MC, Kane JP, Feingold KR, Rapp JH (1995) Triglyceride-rich lipoproteins prevent septic death in rats. J Exp Med 182: 267–272

    Article  PubMed  CAS  Google Scholar 

  38. Saubion JL, Hazane C, Jalabert M (1998) The role of sterols in lipid emulsions for parenteral nutrition. Nutrition 14: 477–478

    Article  PubMed  CAS  Google Scholar 

  39. Druml W, Fischer M, Ratheiser K (1998) Utilization of intravenous lipid emulsions in critically ill patients with sepsis without and with hepatic failure. JPEN J Parenter Enteral Nutr 22: 217–223

    Article  PubMed  CAS  Google Scholar 

  40. Groop LC, Bonadonna RC, Shank M, Petrides AS, De-Fronzo RA (1991) Role of free fatty acids and insulin determining free fatty acid and lipid oxidation in man. J Clin Invest 87: 82–89

    Article  Google Scholar 

  41. Henderson AA, Frayn KN, Galasko CSB, Little RA (1991) Dose-response relationships for the effects of insulin on glucose metabolism in injured patients and control subjects. Clin Science 80: 25–32

    CAS  Google Scholar 

  42. Randle PJ, Garland PB, Hales CN, Newsholm EA (1963) The glucose fatty-acid cycle, its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet i: 785–789

    Article  Google Scholar 

  43. Miles JM, Haymond MW, Gerich JE (1980) Suppression of glucose production and stimulation of insulin secretion by physiological concentrations of ketone bodies in man. J Clin Endocrinol Metab 52: 34–37

    Article  Google Scholar 

  44. Hiraide A, Katayama M, Sugimoto H, Yoshioka T, Sugimoto T (1991) Effect of 3-hydroxybutyrate on posttraumatic metabolism in man. Surgery 109: 176–181

    PubMed  CAS  Google Scholar 

  45. Windmueller HG, Spaeth AE (1978) Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem 253: 69–73

    PubMed  CAS  Google Scholar 

  46. Wilmore DW, Smith RJ, O’Dwyer ST, Jacobs DO, Ziegler TR, Wang X-D (1988) The gut: a central organ after surgical stress. Surgery 104: 917–923

    PubMed  CAS  Google Scholar 

  47. Alverdy JC, Aoys E, Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104: 185–190

    PubMed  CAS  Google Scholar 

  48. Iba T, Yagi Y, Kidokoro A, Ohno Y, Kaneshiro Y, Akiyama T (1998) Total parenteral nutrition supplemented with medium-chain triaglycerols prevents atrophy of the intestinal mucosa in septic rats. Nutrition 14: 667–671

    Article  PubMed  CAS  Google Scholar 

  49. Ney DM, Yang H, River J, Lasekan JB (1993) Total parenteral nutrition containing medium vs. long chain triglyceride emulsions elevates plasma cholesterol concentrations in rats. J Nutr 123: 883–892

    PubMed  CAS  Google Scholar 

  50. Gui D, Spada PL, De Gaetano A, Pacelli F (1996) Hypocholesterolemia and risk of death in the critically ill surgical patient. Intensive Care Med 22: 790–794

    Article  PubMed  CAS  Google Scholar 

  51. Giovannini I, Boldrini G, Chiarla C, Giuliante F, Vellone M, Nuzzo G (1999) Pathophysiologic correlates of hypocholesterolemia in critically ill surgical patients. Intensive Care Med 25: 748–751

    Article  PubMed  CAS  Google Scholar 

  52. Obialo CI, Okonofua EC, Nzerue MC, Tayade AS, Riley LJ (1999) Role of hypoalbuminemia and hypocholesterolemia as copredictors of mortality in acute renal failure. Kidney Int 56: 1058–1063

    Article  PubMed  CAS  Google Scholar 

  53. Gordon BR, Parker TS, Levine DM, Saal SD, Wang JCL, Sloan BJ, Barie PS, Rubin AL (2001) Relationship of hypolipidemia to cytokine concentrations and outcome in criticall ill surgical patients. Crit Care Med 29: 1563–1568

    Article  PubMed  CAS  Google Scholar 

  54. Beau P, Tallineau C, Barbieux J-P, Ingrand P, Matuchansky C (1991) Cholesterol-lowering effect of continuous enteral nutrition in man. Clin Nutr 10: 279–283

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred Druml MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druml, W., Fischer, M. Cholesterol improves the utilization of parenteral lipid emulsions. Wien Klin Wochenschr 115, 767–774 (2003). https://doi.org/10.1007/BF03040501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040501

Schlüsselwörter

key words

Navigation