Skip to main content
Log in

Measuring the pressure pattern of the joint surface in the uninjured knee

Messung der Gelenksflächendruckverteilung im unverletzten Kniegelenk

  • Original Article
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Ziel der Studie

Überprüfung eines intraoperativ einsatzbaren Oberflächendruckmesssystems unter Simulation von Operationssaalbedingungen.

Art der Studie

Leichenexperiment.

Material und Methoden

An fünf Leichen wurden die Messproben (K 6900 quad probes) medial und lateral in das Kniegelenk eingeführt. Das Messsystem ermöglicht Datenerfassung in Echtzeit und EDV-gestützte Datenerfassung (K-scan system,Hersteller: Tekscan Inc., South Boston, MA). Initial befand sich das Knie hängend in 90° Beugung in der selben Position wie in einem leg-holder. Dann wurde das Knie manuell bis 0° gestreckt und wieder in Beugung gebracht. Die Daten werden als Relativwerte angegeben, da sie als Grundlage für intraoperative Messungen dienen sollen. Die Absolutwerte würden während der Arthroskopie durch den Druck der Arthroskopiepumpe laufend verändert werden.

Ergebnisse

Das initiale Verhältnis des Gelenksflächendrucks in 90° Beugung war 1∶1,5 zwischen dem medialen und dem lateralen Gelenksspalt. Während der Streckung stieg der Druck im medialen Gelenksabschnitt und erreichte 1∶1 bei circa 15°, bei voller Streckung lag das Verhältnis bei 1,8∶1 zwischen medial und lateral. Bei der Rückführung des Unterschenkels wurde eine ähnliche Gelenksflächendruckverteilung aufgezeichnet.

Zusammenfassung

Unter Operationssaalbedingungen ist die Gelenksflächendruckverteilung zwischen dem medialen und lateralen Kniecompartment ist messbar und reproduzierbar. Der Einsatz der Gelenksflächendruckmessung während der Implantation eines Ersatztransplantates für das vordere Kreuzband könnte Daten für eine intraoperative individuelle Qualitätskontrolle liefern.

Summary

Purpose

Testing an applicable intraoperative system for measuring surface pressure in knee joints, simulating as accurately as possible operating theatre conditions.

Type of study

Cadaver study.

Methods

Pressure probes were introduced into the knee joints medially and laterally (K 6900 quad probes) in five cadavers, providing real-time data with computerized data recording (K-scan system, manuf. Tekscan Inc., South Boston, MA). The initial position of the knee was flexed and hanging, as in a leg holder. In simulation of usual operating theatre procedures, the knee was manually extended to 0° and again brought to hanging position. The data are given as relative-pressure values and shouldserve as the basis for intraoperative use. During arthroscopy, absolute-pressure values would then be influenced by the pressure of the arthroscopy pump.

Results

In 90° flexion the average pressure ratio between the medial and lateral joint compartments was initially 1∶1.5. When the leg was brought to full extension the pressure in the medial compartment increased, giving a pressure ratio of 1∶1 at about 15° and 1.8∶1 at full extension. When bringing the leg back again to 90° a similar pressure ratio curve was recorded.

Conclusions

The pressure relationship between the medial and lateral knee compartments could be recorded and was found reproducible in simulated operating-theatre conditions. The measurement of joint surface pressure during implantation of an anterior cruciate ligament graft could provide data for individual intraoperative quality control, thus improving surgical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Clancy WG Jr, Nelson DA, Reider B, Narechania RG (1982) Anterior cruciate reconstruction using one-third of the patellar ligament, augmented by extra-articular tendon transfer. J Bone Joint Surg (Am) 64-A: 352–359

    Google Scholar 

  2. Grøntvedt T, Engebretsen L, Benum P, Fasting O, Mølster A, Strand T (1996) A prospective, randomized study of three operations for acute rupture of the anterior cruciate ligament: five-year follow-up of one hundred and thirtyone patients. J Bone Joint Surg (Am) 78-A: 159–168

    Google Scholar 

  3. Irrgang JJ, Ho H, Harner CD, Fu FH (1998) Use of the International Knee Documentation guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6: 107–114

    Article  PubMed  CAS  Google Scholar 

  4. Kdolsky R, Kwasny O, Schabus R (1996) Knieformel: ein neues Beurteilungsschema in der Kniebandchirurgie. Acta Chir Austriaca 28 [Suppl 120]: 184–185

    Google Scholar 

  5. Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10: 150–154

    Article  PubMed  CAS  Google Scholar 

  6. Müller W, Biedert R, Hefti F, Jakob RP, Munzinger U, Stäubli HU (1988) OAK knee evaluation. Clin Orthop 232: 37–50

    PubMed  Google Scholar 

  7. Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop 198: 43–49

    PubMed  Google Scholar 

  8. Fleming BC, Good L, Peura GD, Beynnon BD (1999) Calibration and application of an intra-articular force transducer for the measurement of patellar tendon graft forces: an in situ evaluation. J Biomech Eng 121: 393–398

    Article  PubMed  CAS  Google Scholar 

  9. Zacherl J (1993) Der Ersatz des vorderen Kreuzbandes mit dem künstlichen Leeds-Keio-Ligament. Wien Klin Wochenschr 105: 147–151

    PubMed  CAS  Google Scholar 

  10. Lahoda LU (1993) Der Vergleich der parallel und divergent augmentierten Rekonstruktionen des vorderen Kreuzbandes. Wien Klin Wochenschr 105: 558–559

    PubMed  CAS  Google Scholar 

  11. Goss C, Hull ML, Howell SM (1997) Contact pressure and tension in anterior cruciate ligament grafts subjected to roof impingement during passive extension. J Orthop Res 15: 263–268

    Article  PubMed  CAS  Google Scholar 

  12. Kdolsky R (1989) Ergebnisse von Kunststoffbandverstärkung von Rekonstruktionen des vorderen Kreuzbandes. Wien Klin Wochenschr 101: 750–753

    PubMed  CAS  Google Scholar 

  13. Hanley P, Lew WD, Lewis JL, Hunter RE, Kirstukas S, Kowalczyk C (1989) Load sharing and graft forces in anterior cruciate ligament reconstructions with the Ligament Augmentation Device. Am J Sports Med 17: 414–422

    Article  PubMed  CAS  Google Scholar 

  14. Chan KM, Qin L, Li CK, Hung LK, Tang CY, Rolf C (2000) Removal of the lateral or medial third of patellar tendon alters the patellofemoral contact pressure and area: an in vitro experimental study in dogs. Clin Biomech 15: 695–701

    Article  CAS  Google Scholar 

  15. Herzog W, Diet S, Suter E, Mayzus P, Leonard TR, Muller C, et al (1998) Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. J Biomech 31: 1137–1145

    Article  PubMed  CAS  Google Scholar 

  16. Wu JZ, Herzog W, Epstein M (2000) Joint contact mechanics in the early stages of osteoarthritis. Med Eng Phys 22: 1–12

    Article  PubMed  CAS  Google Scholar 

  17. Lee TQ, Gerken AP, Glaser FE, Kim WC, Anzel SH (1997) Patellofemoral joint kinematics and contact pressures in total knee arthroplasty. Clin Orthop 340: 257–266

    Article  PubMed  Google Scholar 

  18. MacDonald P, Miniaci A, Fowler P, Marks P, Finlay B (1996) A biomechanical analysis of joint contact forces in the posterior cruciate deficient knee. Knee Surg Sports Traumatol Arthrosc 3: 252–255

    Article  PubMed  CAS  Google Scholar 

  19. Morgan E, Ostrum RF, DiCicco J, McElroy J, Poka A (1999) Effects of retrograde femoral intramedullary nailing on the patellofemoral articulation. J Orthop Trauma 13: 13–16

    Article  PubMed  CAS  Google Scholar 

  20. Morgan EA, McElroy JJ, DesJardins JA, Anderson DD, Steensen RN (1996) The effect of intercondylar notchplasty on the patellofemoral articulation. Am J Sports Med 24: 843–846.

    Article  PubMed  CAS  Google Scholar 

  21. Simonian PT, Sussmann PS, Wickiewicz TL, Paletta GA, Warren RF (1998) Contact pressures at osteochondral donor sites in the knee. Am J Sports Med 26: 491–494

    PubMed  CAS  Google Scholar 

  22. Kdolsky RK, Reihsner R, Fuchs M, Pöttinger C, Beer RJ (1997) Pressure distribution in human cadaver knee joints without external loading. Orthop Transactions 20: 981–982

    Google Scholar 

  23. Harris ML, Morberg P, Bruce WJM, Walsh WR (1999) An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J Biomech 32: 951–958

    Article  PubMed  CAS  Google Scholar 

  24. Liau JJ, Cheng CK, Huang CH, Lo WH (2002) Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint. Clin Biomech 17: 698–704

    Article  Google Scholar 

  25. Kuroda R, Kambic H, Valdevit A, Andrish JT (2001) Articular cartilage contact pressure after tibial tuberosity transfer. Am J Sports Med 29: 403–409

    PubMed  CAS  Google Scholar 

  26. Grunder W, Kanowski M, Wagner M, Werner A (2000) Visualization of pressure distribution within loaded joint cartilage by application of angle-sensitive NMR microscopy. Magn Reson Med 43: 884–891

    Article  PubMed  CAS  Google Scholar 

  27. Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier KH, et al (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32: 1287–1295

    Article  PubMed  CAS  Google Scholar 

  28. Herberhold C, Stammberger T, Faber S, Putz R, Englmeier KH, Reiser M, et al (1998) An MR-based technique for quantifying the deformation of articular cartilage during mechanical loading in an intact cadaver joint. Magn Reson Med 39: 843–850

    Article  PubMed  CAS  Google Scholar 

  29. DeMarco AL, Rust DA, Bachus KN (2000) Measuring contact pressure and contact area in orthopaedic applications: Fuji film vs. Tekscan. Proceedings of the 46th Annual Meeting. Orthopaedic Research Society. Orlando FL, p 518

  30. Wirz D, Becker R, Li SF, Friederich NF, Müller W (2002) Die Validierung des Tekscan-Systems für statische und dynamische Druckmessungen am humanen Femorotibialgelenk. Biomed Tech 47: 195–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K. Kdolsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kdolsky, R.K., Arabid, B.A., Fuchs, M. et al. Measuring the pressure pattern of the joint surface in the uninjured knee. Wien Klin Wochenschr 116, 196–200 (2004). https://doi.org/10.1007/BF03040487

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040487

Schlüsselwörter

Key words

Navigation