Skip to main content
Log in

Sympathische Überaktivität und Niere

Sympathetic overactivity and the kidney

  • Übersicht
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Hypertension is present in the majority of patients with chronic renal failure and constitutes a major risk factor for the very high cardiovascular morbidity and mortality in this patient population. Furthermore hypertension is known to be a substantial progression factor in renal disease. In the past, it had been presumed that hypertension in chronic renal failure is due to enhanced sodium retention, chronic hypervolemia and increased activity of the renin-angiotensin-aldosteronesystem. Recent studies now provide evidence that sympathetic overactivity plays an additional important role and also promotes progression of renal failure. The treatment goal in renal patients is to delay or even prevent progression of renal failure and to reduce the cardiovascular risk. Recent studies have investigated the respective impact of sympatholytic drugs, e.g. inhibitors of the renin-angiotensin-aldosterone-system, β-blockers or l1-Imidazolin-receptor-agonists in fulfilling these aims. The present report will review experimental and clinical studies on the role of sympathetic overactivity in hypertension and chronic renal failure and possible new therapeutic options.

Zusammenfassung

Eine arterielle Hypertonie gilt als wesentlicher Progressionsfaktor für den renalen Funktionsverlust bei Patienten mit chronischer Niereninsuffizienz. Sie stellt in der Mehrzahl der Patienten auch einen Hauptrisikofaktor für die besonders hohe kardiovaskuläre Morbidität und Mortalität dar. Ursprünglich wurde die arterielle Hypertonie bei Patienten mit Niereninsuffizienz durch eine gesteigerte Salzretention, chronische Hypervolämie und erhöhte Aktivität des Renin-Angiotensin-Aldosteron-System erklärt. Neuere Studien zeigen, dass auch eine sympathische Überaktivität zur Bluthochdruckerhöhung bei chronischer Niereninsuffizienz und auch direkt zur Progression des renalen Schadens beiträgt. Studien der letzten Jahre untersuchten die Wirksamkeit sympatholytischer Substanzen, wie z.B. von Hemmern des Renin-Angiotensin-Aldosteron-Systems, β-Blockern oder zentralwirksamer l1-Imidazolinrezeptor-Agonisten, die die Progression der Nierenerkrankung verhindern oder zumindest verzögern und das kardiovaskuläre Risiko verringern können. Die vorliegende Arbeit soll einen Überblick über die experimentellen und klinischen Studien zur Rolle des Sympathikus bei Hypertonie und Niereninsuffizienz geben und mögliche neue Therapiestrategien aufzeigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Brook RD, Julius S (2000) Autonomic imbalance, hypertension, and cardiovascular risk. Am J Hypertens 13: 112S-122S

    Article  CAS  PubMed  Google Scholar 

  2. Mancia G, Grassi G, Giannattasio C, Seravalle G (1999) Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 34: 724–728

    CAS  PubMed  Google Scholar 

  3. DiBona GF (2003) Neural control of the kidney: past, present, and future. Hypertension 41: 621–624

    Article  CAS  PubMed  Google Scholar 

  4. Rump LC, Amann K, Ritz E (2003) Sympathetic innervation of the kidney in health and disease. In: Bolis L, Licinio J, Govoni S (eds) Handbook of the autonomic nervous system in health and disease. Marcel Dekker: New York Basel, pp 561–587

    Google Scholar 

  5. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, et al (1996) Blood pressure and end-stage renal disease in men. N Engl J Med 334: 13–18

    Article  CAS  PubMed  Google Scholar 

  6. Esler M (2000) The sympathetic system and hypertension. Am J Hypertens 13: 99S-105S

    Article  CAS  PubMed  Google Scholar 

  7. Amann K, Rump LC, Simonaviciene A, Oberhauser V, Wessels S, Orth SR, et al (2000) Effects of low dose sympathetic inhibition on glomerulosclerosis and albuminuria in subtotally nephrectomized rats. J Am Soc Nephrol 11: 1469–1478

    CAS  PubMed  Google Scholar 

  8. Campese VM, Kogosov E, Koss M (1995) Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis 26: 861–865

    Article  CAS  PubMed  Google Scholar 

  9. Augustyniak RA, Tuncel M, Zhang W, Toto RD, Victor RG (2002) Sympathetic overactivity as a cause of hypertension in chronic renal failure. J Hypertens 20: 3–9

    Article  CAS  PubMed  Google Scholar 

  10. Orth SR, Amann K, Strojek K, Ritz E (2001) Sympathetic overactivity and arterial hypertension in renal failure. Nephrol Dial Transplant 16 [Suppl 1]: 67–69

    PubMed  Google Scholar 

  11. Rump LC, Amann K, Orth S, Ritz E (2000) Sympathetic overactivity in renal disease: a window to understand progression and cardiovascular complications of uraemia? Nephrol Dial Transplant 15: 1735–1738

    Article  CAS  PubMed  Google Scholar 

  12. Recordati G, Moss NG, Genovesi S, Rogenes P (1981) Renal chemoreceptors. J Auton Nerv Syst 3: 237–251

    Article  CAS  PubMed  Google Scholar 

  13. Katholi RE, Whitlow PL, Hageman GR, Woods WT (1984) Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J Hypertens 2: 349–359

    Article  CAS  PubMed  Google Scholar 

  14. Faber JE, Brody MJ (1985) Afferent renal nerve-dependent hypertension following acute renal artery stenosis in the conscious rat. Circ Res 57: 676–688

    CAS  PubMed  Google Scholar 

  15. Cuche JL, Prinseau J, Selz F, Ruget G, Baglin A (1986) Plasma free, sulfo- and glucuro-conjugated catecholamines in uremic patients. Kidney Int 30: 566–572

    Article  CAS  PubMed  Google Scholar 

  16. Campese VM, Romoff MS, Levitan D, Lane K, Massry SG (1981) Mechanisms of autonomic nervous system dysfunction in uremia. Kidney Int 20: 246–253

    Article  CAS  PubMed  Google Scholar 

  17. Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al (1999) Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med 340: 1321–1328

    Article  CAS  PubMed  Google Scholar 

  18. Converse RL Jr., Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al (1992) Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 327: 1912–1918

    PubMed  Google Scholar 

  19. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al (2002) Sympathetic nerve activity in end-stage renal disease. Circulation 106: 1974–1979

    Article  PubMed  Google Scholar 

  20. Schobel HP, Heusser K, Schmieder RE, Veelken R, Fischer T, Luft FC (1998) Evidence against elevated sympathetic vasoconstrictor activity in borderline hypertension. J Am Soc Nephrol 9: 1581–1587

    CAS  PubMed  Google Scholar 

  21. Campese VM, Kogosov E (1995) Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 25: 878–882

    CAS  PubMed  Google Scholar 

  22. Ye S, Ozgur B, Campese VM (1997) Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int 51: 722–727

    Article  CAS  PubMed  Google Scholar 

  23. Weber F, Brodde OE, Anlauf M, Bock KD (1983) Subelassification of human beta-adrenergic receptors mediating renin release. Clin Exp Hypertens A 5: 225–238

    Article  CAS  PubMed  Google Scholar 

  24. Davis JO, Freeman RH (1976) Mechanisms regulating renin release. Physiol Rev 56: 1–56

    CAS  PubMed  Google Scholar 

  25. Kannan H, Nakamura T, Jin XJ, Hayashida Y, Yamashita H (1991) Effects of centrally administered angiotensin on sympathetic nerve activity and blood flow to the kidney in conscious rats. J Auton Nerv Syst 34: 201–210

    Article  CAS  PubMed  Google Scholar 

  26. Ye S, Zhong H, Duong VN, Campese VM (2002) Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension. Hypertension 39: 1101–1106

    Article  CAS  PubMed  Google Scholar 

  27. Le Fevre ME, Guild SJ, Ramchandra R, Barrett CJ, Malpas SC (2003) Role of angiotensin II in the neural control of renal function. Hypertension 41: 583–591

    Article  PubMed  CAS  Google Scholar 

  28. Johansson M, Elam M, Rundqvist B, Eisenhofer G, Herlitz H, Lambert G, et al (1999) Increased sympathetic nerve activity in renovascular hypertension. Circulation 99: 2537–2542

    CAS  PubMed  Google Scholar 

  29. Rahman SN, Abraham WT, Van Putten VJ, Hasbargen JA, Schrier RW (1993) Increased norepinephrine secretion in patients with the nephrotic syndrome and normal glomerular filtration rates: evidence for primary sympathetic activation. Am J Nephrol 13: 266–270

    Article  CAS  PubMed  Google Scholar 

  30. Cerasola G, Vecchi M, Mule G, Cottone S, Mangano MT, Andronico G, et al (1998) Sympathetic activity and blood pressure pattern in autosomal dominant polycystic kidney disease hypertensives. Am J Nephrol 18: 391–398

    Article  CAS  PubMed  Google Scholar 

  31. Strojek K, Grzeszczak W, Gorska J, Leschinger MI, Ritz E (2001) Lowering of microalbuminuria in diabetic patients by a sympathicoplegic agent: novel approach to prevent progression of diabetic nephropathy? J Am Soc Nephrol 12: 602–605

    CAS  PubMed  Google Scholar 

  32. Rump LC, Bohmann C, Schwertfeger E, Krumme B, von Kugelgen I, Schollmeyer P (1996) Extracellular ATP in the human kidney: mode of release and vascular effects. J Auton Pharmacol 16: 371–375

    Article  CAS  PubMed  Google Scholar 

  33. Bohmann C, Rump LC, Schaible U, von Kugelgen I (1995) Alpha-adrenoceptor modulation of norepinephrine and ATP release in isolated kidneys of spontaneously hypertensive rats. Hypertension 25: 1224–1231

    CAS  PubMed  Google Scholar 

  34. Oberhauser V, Vonend O, Rump LC (1999) Neuropeptide Y and ATP interact to control renovascular resistance in the rat. J Am Soc Nephrol 10: 1179–1185

    CAS  PubMed  Google Scholar 

  35. Vonend O, Oberhauser V, von Kugelgen I, Apel TW, Amann K, Ritz E, et al (2002) ATP release in human kidney cortex and its mitogenic effects in visceral glomerular epithelial cells. Kidney Int 61: 1617–1626

    Article  CAS  PubMed  Google Scholar 

  36. Bousquet P, Feldman J (1999) Drugs acting on imidazoline receptors: a review of their pharmacology, their use in blood pressure control and their potential interest in cardioprotection. Drugs 58: 799–812

    Article  CAS  PubMed  Google Scholar 

  37. Amann K, Koch A, Hofstetter J, Gross ML, Haas C, Orth SR, et al (2001) Glomerulosclerosis and progression: effect of subantihypertensive doses of alpha and beta blockers. Kidney Int 60: 1309–1323

    Article  CAS  PubMed  Google Scholar 

  38. Odoni G, Ogata H, Viedt C, Amann K, Ritz E, Orth SR (2002) Cigarette smoke condensate aggravates renal injury in the renal ablation model. Kidney Int 61: 2090–2098

    Article  PubMed  Google Scholar 

  39. Benck U, Clorius JH, Zuna I, Ritz E (1999) Renal hemodynamic changes during smoking: effects of adrenoreceptor blockade. Eur J Clin Invest 29: 1010–1018

    Article  CAS  PubMed  Google Scholar 

  40. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L (1999) Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 82: 1730–1736

    Google Scholar 

  41. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311: 819–823

    CAS  PubMed  Google Scholar 

  42. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73: 615–621

    CAS  PubMed  Google Scholar 

  43. Patel KP, Zhang K, Carmines PK (2000) Norepinephrine turnover in peripheral tissues of rats with heart failure. Am J Physiol Regul Integr Comp Physiol 278: R556–562

    CAS  PubMed  Google Scholar 

  44. Benedict CR, Shelton B, Johnstone DE, Francis G, Greenberg B, Konstam M, et al (1996) Prognostic significance of plasma norepinephrine in patients with asymptomatic left ventricular dysfunction. SOLVD Investigators. Circulation 94: 690–697

    CAS  PubMed  Google Scholar 

  45. Feng QP, Carlsson S, Thoren P, Hedner T (1994) Characteristics of renal sympathetic nerve activity in experimental congestive heart failure in the rat. Acta Physiol Scand 150: 259–266

    Article  CAS  PubMed  Google Scholar 

  46. DiBona GF, Sawin LL (1994) Reflex regulation of renal nerve activity in cardiac failure. Am J Physiol 266: R27–39

    CAS  PubMed  Google Scholar 

  47. DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77: 75–197

    CAS  PubMed  Google Scholar 

  48. Mento PF, Pica ME, Hilepo J, Chang J, Hirsch L, Wilkes BM (1998) Increased expression of glomerular AT1 receptors in rats with myocardial infarction. Am J Physiol 275: H1247–1253

    CAS  PubMed  Google Scholar 

  49. Patel KP, Zhang PL, Krukoff TL (1993) Alterations in brain hexokinase activity associated with heart failure in rats. Am J Physiol 265 (4 Pt 2): R923–928

    CAS  PubMed  Google Scholar 

  50. DiBona GF, Sawin LL (1999) Effect of metoprolol administration on renal sodium handling in experimental congestive heart failure. Circulation 100: 82–86

    CAS  PubMed  Google Scholar 

  51. Henriksen JH, Ring-Larsen H (1994) Hepatorenal disorders: role of the sympathetic nervous system. Semin Liver Dis 14: 35–43

    Article  CAS  PubMed  Google Scholar 

  52. Nicholls KM, Shapiro MD, Van Putten VJ, Kluge R, Chung HM, Bichet DG, et al (1985) Elevated plasma norepinephrine concentrations in decompensated cirrhosis. Association with increased secretion rates, normal clearance rates, and suppressibility by central blood volume expansion. Circ Res 56: 457–461

    CAS  PubMed  Google Scholar 

  53. Bichet DG, Van Putten VJ, Schrier RW (1982) Potential role of increased sympathetic activity in impaired sodium and water excretion in cirrhosis. N Engl J Med 307: 1552–1557

    CAS  PubMed  Google Scholar 

  54. Gaudin C, Braillon A, Poo JL, Moreau R, Hadengue A, Lebrec D (1991) Regional sympathetic activity, severity of liver disease and hemodynamics in patients with cirrhosis. J Hepatol 13: 161–168

    Article  CAS  PubMed  Google Scholar 

  55. Henriksen JH, Christensen NJ, Ring-Larsen H (1981) Noradrenaline and adrenaline concentrations in various vascular beds in patients with cirrhosis. Relation to haemodynamics. Clin Physiol 1: 293–304

    Article  CAS  PubMed  Google Scholar 

  56. Henriksen JH, Ring-Larsen H, Christensen NJ (1988) Kidney, lower limb and whole-body uptake and release of catecholamines in alcoholic liver disease. Clin Physiol 8: 203–213

    Article  CAS  PubMed  Google Scholar 

  57. Kostreva DR, Castaner A, Kampine JP (1980) Reflex effects of hepatic baroreceptors on renal and cardiac sympathetic nerve activity. Am J Physiol 238: R390–394

    CAS  PubMed  Google Scholar 

  58. Solis-Herruzo JA, Duran A, Favela V, Castellano G, Madrid JL, Munoz-Yague MT, et al (1987) Effects of lumbar sympathetic block on kidney function in cirrhotic patients with hepatorenal syndrome. J Hepatol 5: 167–173

    Article  CAS  PubMed  Google Scholar 

  59. Meredith IT, Broughton A, Jennings GL, Esler MD (1991) Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med 325: 618–624

    CAS  PubMed  Google Scholar 

  60. Bleyer AK, Russell GB, Satko SG (1999) Sudden and cardiac death rates in hemodialysis patients. Kidney Int 55: 1553–1559

    Article  CAS  PubMed  Google Scholar 

  61. Wikstrand J, Warnold I, Olsson G, Tuomilehto J, Elmfeldt D, Berglund G (1988) Primary prevention with metoprolol in patients with hypertension. Mortality results from the MAPHY study. JAMA 259: 1976–1982

    Article  CAS  PubMed  Google Scholar 

  62. (1985) Cardiovascular risk and risk factors in a randomized trial of treatment based on the beta-blocker oxprenolol: the International Prospective Primary Prevention Study in Hypertension (IPPPSH). The IPPPSH Collaborative Group. J Hypertens 3: 379–392

  63. (1997) Management of stable angina pectoris. Recommendations of the Task Force of the European Society of Cardiology. Eur Heart J 18: 394–413

  64. Freemantle N, Cleland J, Young P, Mason J, Harrison J (1999) Beta blockade after myocardial infarction: systematic review and meta regression analysis. BMJ 318: 1730–1737

    CAS  PubMed  Google Scholar 

  65. Gottlieb SS, McCarter RJ, Vogel RA (1998) Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. N Engl J Med 339: 489–497

    Article  CAS  PubMed  Google Scholar 

  66. Rochon PA, Tu JV, Anderson GM, Gurwitz JH, Clark JP, Lau P, et al (2000) Rate of heart failure and 1-year survival for older people receiving low-dose beta-blocker therapy after myocardial infarction. Lancet 356: 639–644

    Article  CAS  PubMed  Google Scholar 

  67. Koch M, Thomas B, Tschope W, Ritz E (1993) Survival and predictors of death in dialysed diabetic patients. Diabetologia 36: 1113–1117

    Article  CAS  PubMed  Google Scholar 

  68. Agarwal R (1999) Supervised atenolol therapy in the management of hemodialysis hypertension. Kidney Int 55: 1528–1535

    Article  CAS  PubMed  Google Scholar 

  69. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, et al (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 334: 1349–1355

    Article  CAS  PubMed  Google Scholar 

  70. Taal MW, Brenner BM (2001) Achieving maximal renal protection in nondiabetic chronic renal disease. Am J Kidney Dis 38: 1365–1371

    Article  CAS  PubMed  Google Scholar 

  71. Wright JT Jr, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al (2002) Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA 288: 2421–2431

    Article  CAS  PubMed  Google Scholar 

  72. Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ (2003) Enalapril and losartan reduce sympathetic hyperactivity in patients with chronic renal failure. J Am Soc Nephrol 14: 425–430

    Article  CAS  PubMed  Google Scholar 

  73. Luccioni R (1995) Pharmaco-epidemiologic evaluation of rilmenidine in 18, 235 hypertensive patients. Presse Med 24: 1857–1864

    CAS  PubMed  Google Scholar 

  74. Bousquet P, Feldman J, Schwartz J (1984) Central cardiovascular effects of alpha adrenergic drugs: differences between catecholamines and imidazolines. J Pharmacol Exp Ther 230: 232–236

    CAS  PubMed  Google Scholar 

  75. Bauduceau B, Mayaudon H, Dupuy O (2000) Rilmenidine in the hypertensive type-2 diabetic: a controlled pilot study versus captopril. J Cardiovasc Risk 7: 57–61

    CAS  PubMed  Google Scholar 

  76. Puttinger H, Soleiman A, Oberbauer R (2003) Regression of hypertensive nephropathy during three years of optimal blood pressure control. Wien Klin Wochenschr 115: 429–431

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Watschinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habicht, A., Watschinger, B. Sympathische Überaktivität und Niere. Wien Klin Wochenschr 115, 634–640 (2003). https://doi.org/10.1007/BF03040468

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040468

Key words

Schlüsselwörter

Navigation