Advertisement

Quantification of recent smoking behaviour using proton transfer reaction-mass spectrometry (PTR-MS)

  • Philipp Lirk
  • Florian Bodrogi
  • Martina Deibl
  • Christian M. Kähler
  • Joshua Colvin
  • Berthold Moser
  • Germar Pinggera
  • Hartmann Raifer
  • Josef Rieder
  • Wolfgang SchobersbergerEmail author
Original Article

Summary

Smoking is the most important single risk factor in current public health. Surveillance of exposure to tobacco smoke may be accomplished using environmental monitoring or in-vivo tests for smoking biomarkers. Acetonitrile exhaled in human breath has been described as a potential marker mirroring recent smoking behavior. The aim of this study was to determine exhaled acetonitrile levels in a sample of 268 volunteers (48 smokers, 220 non-smokers) attending a local health fair.

Breath specimens were collected into inert sample bags, with parallel collection of ambient air. Subsequently, all samples were analysed using proton transfer reaction-mass spectrometry (PTR-MS).

Smokers had elevated levels of exhaled acetonitrile compared with non-smokers (p<0.001). Analysis using the receiver-operating-characteristic curve demonstrated that smoking can be predicted with a sensitivity of 79% and a specificity of 91%, using a cut-off concentration of 20.31 parts per billion of acetonitrile.

This first field survey of exhaled acetonitrile in a large group of test persons demonstrates the feasibility of a rapid and non-invasive test for recent exposure to tobacco. We conclude that analysis of exhaled-breath acetonitrile may serve as a method of determining recent active smoking behaviour.

Keywords

Smoking risk factor assessment acetonitrile proton transfer reaction-mass spectrometry (PTR-MS) breath test 

Quantifizierung des rezenten Raucher-Verhaltens durch Protonen Transfer Reaktions-Massenspektrometrie (PTR-MS)

Zusammenfassung

Heutzutage gilt Rauchen als der wichtigste medizinische Risikofaktor. Die Überwachung einer Exposition gegenüber Tabakrauch kann im Prinzip mittels Umluftmessungen, oder direkt mit Hilfe von Biomarkern erfolgen. Acetonitrile wurde als ein potentieller Marker für das rezente Raucherverhalten beschrieben. Es war daher das Ziel vorliegender Studie, die in der Ausatemluft festgestellten Acetonitrile-Konzentrationen in einem Kollektiv von 268 Personen (48 Raucher, 220 Nichtraucher) festzustellen.

Atemgasproben wurden in inerten Sammelgefäßen gesammelt, und die Konzentration von Acetonitrile in der Umluft während der Abnahmen wurde parallel erhoben. Die Analyse der Umluft- und Atemluftproben erfolgte mittels Protonen Transfer Reaktions-Massenspektrometrie (PTR-MS).

Raucher zeigten in der Ausatemluft signifikant erhöhte Acetonitrilekonzentrationen im Vergleich zu Nichtrauchern (p<0,001). Die Erstellung einer receiver-operating-characteristic curve ergab für die Unterscheidung von Rauchern und Nichtrauchern mittels PTR-MS eine Sensitivität von 79% und eine Spezifität von 91% bei einem Schwellenwert von 20.31 parts per billion.

Diese erste Feldstudie zum Thema Acetonitrile in einem großen Testkollektiv konnte die Praktikabilität dieses Markers als schnellen und nichtinvasiven Test rezenten Raucherverhaltens nachweisen. Wir schlussfolgern, dass die Analyse der Atemgaskonzentration von Acetonitrile Rückschlüsse auf das aktive Raucherverhalten ziehen lässt.

Schlüsselwörter

Rauchen Risikofaktor Acetonitrile Protonen Transfer Reaktions-Massenspektrometrie Atemtest 

References

  1. 1.
    Straus SE, Majumdar SR, McAlister FA (2002) New evidence for stroke prevention: scientific review. JAMA 288: 1388–1395CrossRefPubMedGoogle Scholar
  2. 2.
    Woody G, Cottler L, Caggiula J (1993) Severity of dependence: data from the DSM-IV field trials. Addiction 88: 1573–1579CrossRefPubMedGoogle Scholar
  3. 3.
    Groman E, Fagerström K (2003) Nicotine dependence: development, mechanisms, individual differences and links to possible neurophysiological correlates. Wien Klin Wochenschr 115: 155–160PubMedCrossRefGoogle Scholar
  4. 4.
    Kunzli N (2002) The public health relevance of air pollution abatement. Eur Respir J 20: 198–209CrossRefPubMedGoogle Scholar
  5. 5.
    Houeto P, Hoffman JR, Got P, Dang Vu B, Baud FJ (1997) Acetonitrile as a possible marker of current cigarette smoking. Hum Exp Toxicol 16: 658–661CrossRefPubMedGoogle Scholar
  6. 6.
    Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L (1999) Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353: 1930–1933CrossRefPubMedGoogle Scholar
  7. 7.
    Lirk P, Bodrogi F, Raifer H, Greiner K, Ulmer H, Rieder J (2003) Elective hemodialysis increases exhaled isoprene Nephrol Dial Transplant 18: 937–941CrossRefPubMedGoogle Scholar
  8. 8.
    Rieder J, Lirk P, Ebenbichler C, Gruber G, Prazeller P, Lindinger W, Amann A (2001) Analysis of volatile organic compounds: possible applications in metabolic disorders and cancer screening. Wien Klin Wochenschr 113: 181–185PubMedGoogle Scholar
  9. 9.
    Prazeller P, Karl T, Jordan A, Holzinger R, Hansel A, Lindinger W (1998) Quantification of passive smoking using proton-transfer-reaction mass spectrometry. Int J Mass Spectrom 179: L1-L4CrossRefGoogle Scholar
  10. 10.
    Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Proton transfer reacation mass spectrometry: on-line trace gas analysis at the ppb level. Int J Mass Spectrom Ion Processes 149/150: 609–619CrossRefGoogle Scholar
  11. 11.
    Lindinger W, Hansel A, Jordan A (1998: On-line monitoring of volatile organic compounds at pptv level by means of Proton Transfer Reaction-Mass Spectrometry (PTR-MS).. Medical applications, food control and environmental research. Int J Mass Spectrom Ion Processes 173: 191–241CrossRefGoogle Scholar
  12. 12.
    Karl T, Prazeller P, Mayr D, Jordan A, Rieder J, Fall R, Lindinger W (2001) Human breath isoprene and its relation to blood cholesterol leveles: new measurements and modeling. J Appl Physiol 91: 762–770PubMedGoogle Scholar
  13. 13.
    Gordon SM, Wallace LA, Brinkman MC, Callahan PJ, Kenny DV (2002) Volatile organic compounds as breath biomarkers for active and passive smoking. Environ Health Perspect 110: 689–698PubMedGoogle Scholar
  14. 14.
    Kemmeren JM, van Poppel G, Verhoef P, Jarvis MJ (1994) Plasma cotinine: stability in smokers and validation of self-reported smoke exposure in nonsmokers. Environ Res 66: 235–243CrossRefPubMedGoogle Scholar
  15. 15.
    Al-Delaimy WK, Crane J, Woodward A (2002) Is the hair nicotine level a more accurate biomarker of environmental tobacco smoke exposure than urine cotinine? J Epidemiol Community Health 56: 66–71CrossRefPubMedGoogle Scholar
  16. 16.
    Jordan A, Hansel A, Holzinger R, Lindinger W (1995) Acetonitrile and benzene in the breath of smokers and nonsmokers investigated by proton transfer reacation mass spectrometry (PTR-MS). Int J Mass Spectrom Ion Processes 148: L1-L3CrossRefGoogle Scholar
  17. 17.
    Carpagnano G, Kharitonov S, Foschino-Barbaro M, Resta O, Gramiccioni E, Barnes P (2003) Increased inflammatory markers in the exhaled breath condensate of cigarette smokers. Eur Respir J 21: 589–593CrossRefPubMedGoogle Scholar
  18. 18.
    Woodward M, Tunstall-Pedoe H, Smith WC, Tavendale R (1991) Smoking characteristics and inhalation biochemistry in the Scottish population. J Clin Epidemiol 44: 1405–1410CrossRefPubMedGoogle Scholar
  19. 19.
    Santella RM, Grinberg-Funes RA, Young TL, Dickey C, Singh VN, Wang LW, Perera FP (1992): Cigarette smoking related polycyclic aromatic hydrocarbon-DNA adducts in peripheral mononuclear cells. Carcinogenesis 13: 2041–2045CrossRefPubMedGoogle Scholar
  20. 20.
    Holmen TL, Barrett-Connor E, Clausen J, Langhammer A, Holmen J, Bjermer L (2002) Gender differences in the impact of adolescent smoking on lung function and respiratory symptoms. the Nord-Trondelag Health Study, Norway, 1995–1997. Respir Med 96: 796–804CrossRefPubMedGoogle Scholar
  21. 21.
    Phillips M, Cataneo RN, Ditkoff B, Fisher P, Greenberg J, Gunawardena R, Kwon C, Rahbari-Oskoui F, Wong C (2003) Volatile markers of breath cancer in the breath. Breast Journal 9: 345CrossRefGoogle Scholar
  22. 22.
    Phillips M, Cataneo RN, Cummin AR, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN (2003) Detection of lung cancer with volatile markers in the breath. Chest, 123: 2115–2123CrossRefPubMedGoogle Scholar
  23. 23.
    Phillips M, Erickson GA, Sabas M, Smith JP, Greenberg J (1995) Volatile organic compounds in the breath of patients with schizophrenia. J Clin Pathol 48: 466–469CrossRefPubMedGoogle Scholar
  24. 24.
    Narasimhan LR, Goodman W, Patel CK (2001) Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc Natl Acad Sci USA 98: 4617–4621CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Philipp Lirk
    • 1
  • Florian Bodrogi
    • 1
  • Martina Deibl
    • 2
  • Christian M. Kähler
    • 3
  • Joshua Colvin
    • 1
  • Berthold Moser
    • 1
  • Germar Pinggera
    • 4
  • Hartmann Raifer
    • 1
  • Josef Rieder
    • 1
  • Wolfgang Schobersberger
    • 5
    Email author
  1. 1.Department of Anesthesiology and Critical Care MedicineLeopold-Franzens UniversityInnsbruckAustria
  2. 2.Department of Biostatistics and DocumentationLeopold-Franzens UniversityInnsbruckAustria
  3. 3.Department of Internal Medicine, Clinical Division of General Internal MedicineLeopold-Franzens UniversityInnsbruckAustria
  4. 4.Department of UrologyLeopold-Franzens UniversityInnsbruckAustria
  5. 5.University for Health Informatics and Technology TyrolInnsbruckAustria

Personalised recommendations