Skip to main content
Log in

Forschungsschwerpunkte der alterspräventiven Medizin

  • Editorial
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Während der letzten zwei Jahrtausende hat sich die mittlere Lebenserwartung der Menschen stetig erhöht. Altern ist ein multifaktorielles Geschehen, das bis heute viele Fragen offen lässt. Obwohl das Altern im Laufe des Lebens von der Natur vorgesehen und somit physiologisch ist, stehen anti aging-Strategien im öffentlichen Interesse und erregen wie kein anderes Thema die Aufmerksamkeit der breiten Masse. Nicht zuletzt weil Jedermann davon betroffen ist. Gebiete wie der Sauerstoffmetabolismus, die Kalorienrestriktion. Genetik, Epigenetik und Stammzellen sind nachweislich in den Alterungsprozess involviert und bieten somit die Grundlage für mögliche neue Ansatzpunkte. Durch den in der Menschheit schon immer bestehenden Wunsch nach ewiger Jugend und den daraus resultierenden falschen „forever young”-Versprechungen, wurde die anti aging-Philosophie nur allzu oft in ein falsches Licht gerückt. Das Forschen nach Möglichkeiten den Alterungsprozess zu verzögern und dadurch das Leben zu prolongieren, sollte jedoch weiterhin Aufgabe der Wissenschaften zur Altersprävention sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Alberga A, Boulay JL, Kempe E, Dennefield C, Haenlin M (1991) The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivates of all three germ layers. Development 111: 983–992

    PubMed  CAS  Google Scholar 

  2. Batlle E et al (2000) The transcription factor snail is a repressor of E-Cadherin gene expression in epithelial tumour cells. Nature Cell Biol 2: 84–89

    Article  PubMed  CAS  Google Scholar 

  3. Biesalski HK (2002) Free radical theory of aging. Curr Opin Clin Nutr Metab Care 5: 5–10

    Article  PubMed  CAS  Google Scholar 

  4. Bowels JT (1998) The evolution of aging: a new approach to an old problem of biology. Med Hypotheses 51: 179–221

    Article  Google Scholar 

  5. Cano A et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-Cadherin expression. Nature Cell Biol 2: 76–83

    Article  PubMed  CAS  Google Scholar 

  6. Counter CM et al (1992) Telomerase shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11: 1921–1929

    PubMed  CAS  Google Scholar 

  7. Dukan S et al (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci USA 97: 5746–5749

    Article  PubMed  CAS  Google Scholar 

  8. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408: 239–247

    Article  PubMed  CAS  Google Scholar 

  9. Golubev AG (1996) The other side of metabolism: a review. Biochemistry 61: 1443–1460

    Google Scholar 

  10. Hall DM et al (2000) Caloric restriction improves thermotolerance and reduces hyperthermia-induced cellular damage in old rats. FASEB J 14: 78–86

    PubMed  CAS  Google Scholar 

  11. Hamelin C, Cousineau L, Dion M, Yelle J (1984) Increased DNA topoisomerase I activity in aging human cell chromatin. Biosci Rep 4: 861–868

    Article  PubMed  CAS  Google Scholar 

  12. Harman D, Johnson JE Jr, Walford R, Miquel J (1986) Free radicals, aging and degenerative diseases. Liss, New York, pp 3–49

    Google Scholar 

  13. Harman D (1994) Free radical theory of aging Increasing the functional life span. Ann NY Acad Sci 717: 1–15

    Article  PubMed  CAS  Google Scholar 

  14. Harman D (1972) Free radical theory of aging: dietary implications. Am J Clin Nutr 25: 839–843

    PubMed  CAS  Google Scholar 

  15. Harman D (1981) The aging process. Proc Natl Acad Sci USA 78: 7124–7128

    Article  PubMed  CAS  Google Scholar 

  16. Harman D (1957) Aging a theory based on free radical and radiation chemistry. J Gerontol 2: 298–300

    Google Scholar 

  17. Imai SI, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein SIR2 is an NAD-dependent histone deacetylase. Nature 403: 795–800

    Article  PubMed  CAS  Google Scholar 

  18. Landry J et al (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. PNAS 97: 5807–5811

    Article  PubMed  CAS  Google Scholar 

  19. Lee SS, Ruvkun G (2002) Don’t hold your breath. Nature 418: 287–288

    Article  PubMed  CAS  Google Scholar 

  20. Masoro EJ (2000) Caloric restriction and aging an update. Exp Gerontol 35: 299–305

    Article  PubMed  CAS  Google Scholar 

  21. Mc Eachern MJ, Krauskopf A, Blckburn, EH (2000) Telomeres and their control. Annu Rev Genet 34: 331–358

    Article  Google Scholar 

  22. Metzstein MM, Horwitz HR (1999) The C, elegans cell death specification gene ces-1 encodes a Snail family zinc finger protein. Mol Cell 4: 309–319

    Article  PubMed  CAS  Google Scholar 

  23. Nugent CI, Lundblad V (1998) The telomerase reverse transcriptase: components and regulation. Genes Dev 12: 1073–1085

    Article  PubMed  CAS  Google Scholar 

  24. Poynter ME, Daynes RA (1998) Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappa B signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 273: 32833–32841

    Article  PubMed  CAS  Google Scholar 

  25. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33: 787–791

    Article  PubMed  CAS  Google Scholar 

  26. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91: 10771–10778

    Article  PubMed  CAS  Google Scholar 

  27. Smith JS et al (2000) A phylogenetically conserved NAD-dependent protein deacetylase activity in the SIR2 protein family. PNAS 97: 6658–6663

    Article  PubMed  CAS  Google Scholar 

  28. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction and aging Science 273: 59–63

    Article  PubMed  CAS  Google Scholar 

  29. Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220–1224

    Article  PubMed  CAS  Google Scholar 

  30. Supakar PC, Jung MH, Song CS, Chatterje B, Roy AK (1995) Nuclear factor kappa B functions as a negative regulator for the rat androgen receptor gen and NF-kappa B activity increases during the age-dependent desensitiziation of the liver. J Biol Chem 270: 837–842

    Article  PubMed  CAS  Google Scholar 

  31. Thomson JA et al (1998) Embryonic stem cell, lines derived from human blastocysts. Science 282: 1145–1147

    Article  PubMed  CAS  Google Scholar 

  32. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17: 3–8

    Article  PubMed  CAS  Google Scholar 

  33. Waugh O’Neill RJ, O’Neill MJ, Marshall Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393: 68–72

    Article  Google Scholar 

  34. Yu GL, Bradley JD, Attardi LD, Blackburn EH (1990) In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344: 126–132

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthai, C., Huber, J. Forschungsschwerpunkte der alterspräventiven Medizin. Wien Klin Wochenschr 115, 275–278 (2003). https://doi.org/10.1007/BF03040331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040331

Key words

Navigation