Skip to main content
Log in

The primary results of quantitative ocean color retrieval in China coastal area with CBERS CCD data

  • Published:
Science in China Series E Engineering & Materials Science Aims and scope Submit manuscript

Abstract

Using the techniques of quantitative ocean color sensing, the in-water ocean color algorithms for sediment and chlorophyll-a retrieval are established for CBERS-02 CCD broad spectral bands based onin situ data. The remote sensing reflectance of water is derived from CCD radiance data by a clear water atmospheric correction algorithm. Then, the sediment and chlorophyll-a concentrations are retrieved from CCD image. The sediment retrieval is quite satisfactory, but the chlorophyll-a retrieval is not so good because of the broadband width and low signal-to-noise ratio of the CCD camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austin, R. W., The remote sensing of spectral, radiance from below the ocean surface, in Optical Aspects of Oceanography, Chapter 14, (eds. Jerlov, N. G., Nielsen, E. S.) London and New York: Academic Press, 1974.

    Google Scholar 

  2. Morel, A., Prieur, L., Analysis of variation in ocean color, Limnology and Oceanography, 1977, 22: 709–722.

    Google Scholar 

  3. Sathyendranath, S., Prieur, L., Morel, A., A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters, International Journal of Remote Sensing 1989, 10(8): 1373–1394.

    Article  Google Scholar 

  4. Gordon, H. R., Brown, O. B., Jacobs, M. M., Computed relationships between the inherent and apparent optical properties of a flat, homogenous ocean, Applied Optics, 1975, 14: 417–427.

    Article  Google Scholar 

  5. Gordon, H. R., Brown, O. B., Evans, R. H. et al., A semianalytic radiance model of ocean color, Journal of Geophysical Research, 1988, 93(D9): 10909–10924.

    Article  Google Scholar 

  6. Gordon, H. R., Removal of atmospheric effects from satellite imagery of the oceans, Applied Optics, 1978, 17: 1631–1636.

    Article  Google Scholar 

  7. Gordon, H. R., Wang, M. H., Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with Sea WiFS: a preliminary algorithm, Applied Optics, 1994, 33(3): 443–452.

    Article  Google Scholar 

  8. Gordon, H. R., Voss, K. J., MODIS Normalized Water leaving Radiance, Version 4, MODIS Algorithm Theoretical Basis Document (ATBD 18), 1999. http://modis.gsfc.nasa.gov/data/atbd

  9. Antoine, D., Morel, A., Atmospheric correction over the ocean (case 1 waters), MERIS ATBD 2: 7, 2000. http://envisat.esa.int/dataproducts/meris/CNTR2-7.htm

    Google Scholar 

  10. Smith, R. C., Wilson, W. H., Ship and satellite bio-optical research in the California Bight, in Oceanography from Space, (ed. Gower, J. F. R.), New York and London, Plenum Press, 1981, 281–294.

    Google Scholar 

  11. Sturm, B., Ocean color remote sensing and quantitative retrieval of surface chlorophyll in coastal waters using NIMBUS CZCS data, in Oceanography from Space, (ed. Gower, J. F. R.) New York and London: Plenum Press, 1981, 267–279.

    Google Scholar 

  12. Arnone, R. A., Martinolich, P, Gould, R. W. et al., Coastal optical properties using SeaWiFS, Ocean Optics XIV [CD-ROM], 1998.

  13. Ruddick, K. G., Ovidio, F., Rijkeboer, M., Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Applied Optics, 2000, 39(6): 897–912.

    Article  Google Scholar 

  14. Hu, C., Carder, K. L., Muller-Karger, F. E., Atmospheric correction of SeaWiFS imagery of turbid coastal waters: A practical method, Remote Sensing of Environment, 2000, 74: 195–206.

    Article  Google Scholar 

  15. Aiken, J., Moore, G., Case-2s bright pixel atmospheric correction, MERIS ATBD 2, 6, 2000, http://envisat.esa.int/dataproducts/meris/CNTR2-7.htm.

    Google Scholar 

  16. IOCCG, Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters, (ed. Sathyendranath, S.), Reports of the International Ocean Colour Coordinating Group, No. 3, Dartmouth, Canada, 2000, http://www.ioccg.org.

  17. Ritchie, J. C., Schiebe, F. R., McHenry, J. R., Remote sensing of suspended sediment in surface water, Photogrammetric Engineering and Remote Sensing, 1976, 42(2): 1539–1545.

    Google Scholar 

  18. Klemas, V., Otley, M., Philpot, W. et al., Correction of coastal water turbidity ani, circulation with ERTS-1 and Skylab imagery, in Proceedings of the Ninth International Symposium on Remote Sensing of Environment (ed. Arbor, A.), Michigan: Environmental Research institute of Michigan, 1974, 1289–1317.

    Google Scholar 

  19. Li, J., Monitoring the sediment concentration with NOAA AVHRR in Hangzhou Bay (in Chinese), Acta Oceanologica, 1987, 9(1): 132–136.

    Google Scholar 

  20. Li, Y., Huang, W., Fang, M., An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data, Continental Shelf Research, 1998, 18: 487–500.

    Article  Google Scholar 

  21. Li, Y., Li, J., A suspended sediment satellite sensing algorithm based on gradient transmitting from water-leaving to satellite-detected reflectance spectrum Chinese Science Bulletin, 2000, 45(10): 925–930.

    Article  Google Scholar 

  22. Krawczyk, H., Neumann, A., Walzel, T. et al., Investigation of interpretation possibilities of spectral high dimensional measurements by means of principal component analysis—a concept for physical interpretation of those measurements, Proc. SPIE, Vol. 1938, 1993, 401–411.

    Article  Google Scholar 

  23. Neumann, A., Krawczyk, H., Walzel, T., A complex approach to quantitative interpretation of spectral high resolution imagery, in Proceedings of Third Thematic Conference on Remote Sensing for Marine and Coastal Environments, Vol. II, Seattle, USA, 1995, 641–652.

  24. Doerffer, R., Fischer, J., Concentrations of chlorophyll, suspended matter, and gelbstoff in Case-II waters derived from satellite coastal zone color scanner data with inverse modeling methods, Journal of Geophysical Research, 1994, 99: 7457–7466.

    Article  Google Scholar 

  25. Doerffer, R., Schiller, H., Determination of Case 2 water constituents using radiative transfer simulation and its inversion by neural networks, Ocean Optics XIV[CD-ROM], 1998.

  26. Doerffer, R., Schiller, H., Determination of water constituents from water leaving radiance reflectance of the ocean colour sensor MOS using inverse modeling, Algorithm Theoretical Basis Document, ESA-ESRIN/ GMV No. 11672/95/I-HGE, 1999.

  27. Keiner, L. E., Yan, X. H., A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery, Remote Sensing of Environment, 1998, 66: 153–165.

    Article  Google Scholar 

  28. Tassan, S., Sturm, B., An algorithm for the retrieval of sediment content in turbid coastal waters from CZCS data. International Journal of Remote Sensing, 1986, 7(5): 643–655.

    Article  Google Scholar 

  29. Tassan, S., Local algorithms using SeaWiFS data for the retrieval of phytoplankton pigments, suspended sediment, and yellow substance in coastal waters, Applied Optics, 1994, 33(12): 2369–2378.

    Article  Google Scholar 

  30. Tassan, S., Water quality monitoring by Thematic Mapper in coastal environments: A performance analysis of local bio-optical algorithm and atmospheric correction procedures, Remote Sensing of Environment, 1993, 45: 177–191.

    Article  Google Scholar 

  31. Tassan, S., An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters, International Journal of Remote Sensing, 1993, 14(6): 1221–1229.

    Article  Google Scholar 

  32. Tassan, S., A procedure to determine the particulate content of shallow water from Thematic Mapper data, International Journal of Remote Sensing, 1998, 19 (3): 557–562.

    Article  Google Scholar 

  33. Miller, R. L., McKee, B. A., Using MODIS Terra 250 m, imagery to map concentrations of total suspended matter in coastal waters, Remote Sensing of Environment, 2004, 93: 259–266.

    Article  Google Scholar 

  34. Li, S. H., The Remote Sensing Mechanism and Applications of Ocean Color in Coastal Area (in Chinese), Ph.D dissertation, Shanghai: Huadong Normal University, 2001.

    Google Scholar 

  35. Pan, D. L., He, X. Q., Development of ocean color remote sensing in China in 2002, 8th IOCCG Meeting, Florence, Italy, 2003, http://www.ioccg.org.

  36. Yun, C. X., Wan, J. R., Analysis and calculation of the sediment diffusion with satellite imagery for the surface water of Changjiang River Estuary (in Chinese), in Selected Papers on Remote Sensing, Beijing: Science Press, 1981, 175–179.

    Google Scholar 

  37. Yun, C. X., Hu, J. M., Feng, H., The research of the quantitative sensing for estuary sediments and applications (in Chinese), in Collection of the Research Achievements of Remote Sensing Technology in the Marine Environment and Resources Investigation, Beijing: Ocean Press, 1987, 99–110.

    Google Scholar 

  38. Li, J., The research of quantitative sensing of suspended mineral particles in water (in Chinese), Acta Scientiae Circumstantiae, 1986, 6(2): 166–173.

    Google Scholar 

  39. Long, Y. M., Zhao, T. C., The remote sensing of sediment concentration and analysis of its influence on harbor construction (in Chinese), in Collection of the Research Achievements of Remote Sensing Technology in the Marine Environment and Resources Investigation, Beijing: Ocean Press, 1987, 111–132.

    Google Scholar 

  40. Zhu, L. J., You, Y. M., The remote sensing analysis for Far East coast changing and sediment distribution (in Chinese), Marine Engineering, 2000, 18(1): 66–69.

    Google Scholar 

  41. Huang, H. J., Li, C. Z., Guo, J. J., The study of spectral characteristics of suspended sediment in Yellow Estuary (in Chinese), Science of Oceanography, 1994, 5: 40–44.

    Google Scholar 

  42. Tang, J. W., Wang, X. M., Song, Q. J. et al., The statistic inversion algorithms of water constituents for Yellow Sea and East China Sea, Acta Oceanologica Sinica, 2004, 23(4): 617–626.

    Google Scholar 

  43. Tang, J. W., Ding, J., Tian, J. W. et al., A neural network model for the retrieval of the three components of Yellow Sea and East China Sea (in Chinese), High Technology Letters, 2005, 15(3): 83–88.

    Google Scholar 

  44. Ahn, Y. H., Moon, J. E., Sonia, G., Development of suspended particulate matter algorithms for ocean color remote sensing, Korean Journal of Remote Sensing, 2001, 17(4): 285–295.

    Google Scholar 

  45. Ma, C. F., Tang, J. W., Wang, Q. M. et al., The sediment influence on the retrieval of chlorophyll-a with HY-1 CCD image in Yellow Sea and East China Sea (in Chinese), Proceedings of 14th national remote sensing seminar, Qingdao 2003.

  46. Tang, J. W., Gu, X. F., Niu, S. L. et al., Water target based cross-calibration of CBERS-02 CCD camera with MODIS data, Science in China, Ser. E, 2005, 48(Supp. I): 61–71.

    Google Scholar 

  47. Niu, S. L., The Cross Calibration of HY-1 COCTS with SeaWiFS (in Chinese), Thesis of Master Degree, National Marine Environment Forecast Center, 2004.

  48. Jiang, X. W., Niu, S. L., Tang, J. W., The system cross-calibration of HY-1 COCTS with SeaWiFS (in Chinese), Journal of Remote Sensing, 2005, 9(6): 685–692.

    Google Scholar 

  49. Gordon, H. R., Radiative transfer in the atmosphere for correction of ocean color remote sensing, in Ocean Color: Theory and Applications in a Decade of CZCS Experience, (eds. Barale, V., Schlittenhardt, P. M.), London, Kluwer Academic Publishers, 1993, 33–77.

    Google Scholar 

  50. Gordon, H. R., Brown, J. W., Evans, R. H., Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner, Applied Optics, 1988, 27(5): 862–871.

    Article  Google Scholar 

  51. Wang, M. H., Atmospheric correction of the second generation ocean color sensors. PhD Dissertation, University of Miami, Department of Physics, 1991.

  52. Wang, M. H., Gordon, H. R., A simple moderate accurate atmospheric correction algorithm for SeaWiFS, Remote Sensing of Environment, 1994, 50: 231–239.

    Article  Google Scholar 

  53. Tang, J. W., The Simulation of Marine Optical Properties and Color Sensing Models (in Chinese), PhD Dissertation, Institute of Remote Sensing Applications, China Academy of Science, 1999.

  54. Gordon, H. R., Remote sensing of ocean color a methodology for dealing with broad spectral bands and significant out-of-band response, Applied Optics, 1995, 34(36): 8363–8374.

    Article  Google Scholar 

  55. Neckel, H., Labs, D., The solar radiation between 3,300 and 12,500Å, Solar Physics, 1984, 90: 205–258.

    Article  Google Scholar 

  56. Leckner, B., The spectral distribution of solar radiation at the earth’s surface—elements of a model, Solar Energy, 1978, 20: 143–150.

    Article  Google Scholar 

  57. Gregg, W. W., Carder, K. L., A simple Inm resolution solar irradiance model for cloudless maritime atmospheres, Limnology and Oceanography, 1990, 35: 1657–1675.

    Article  Google Scholar 

  58. Frouin, R., Schwindling, M., Deschamps, P. Y., Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications, Journal of Geophysical Research, 1996, 101: 14361–14371.

    Article  Google Scholar 

  59. Gordon, H. R., Castano, D. J., Aerosol analysis with the Coastal Zone Color Scanner: A simple method for including multiple scattering effects, Applied Optics, 1989, 28(7): 1320–1326.

    Article  Google Scholar 

  60. Muller, J. L., Fargion, G. S., McClain, C. R., Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, NASA/TM-2003-21621/Rev 4, Vol. I–VI.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Junwu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Ma, C., Niu, S. et al. The primary results of quantitative ocean color retrieval in China coastal area with CBERS CCD data. Sci. China Ser. E-Technol. Sci. 48 (Suppl 2), 161–176 (2005). https://doi.org/10.1007/BF03039432

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03039432

Keywords

Navigation