Skip to main content
Log in

A kinetic, spectral and theoretical investigation on the role of oxygen in the radiolytic oxidation of a sorbityl cyclic acetal

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The oxidation process of the cyclic acetal sorbitylfurfural (SF) has been thoroughly examined from the kinetic, spectroscopic and theoretical point of view. Oxidation has been initiated by the radiolitically produced OH radical in the presence of variable oxygen amounts. Two competing reaction pathways are evidenced which lead to quite different products, although they do not affect the acetal ring integrity. The peroxidation of the hydroxylated furanic ring (k 4=(6.1±0.9)×108 M−1 s−1) maintains the ring structurevia HO 2 elimination (k 6=(1.9±0.4)×105 s−1). Unlike that, the peroxidation of the pseudo-allylic radical (k 5=(1.9±0.9)×109 M−1 s−1), formedvia β-cleavage, fixes the destructured intermediate, leading to a tetroxide, which slowly decomposes through a Russell mechanism (k 8=(2.3±0.6)×102 s−1). It is confirmed that the steady state concentration of the tetroxide is very low, which suggests a molar absorption coefficient for it around 1.2×104 M−1 cm−1 at 265 nm. The end products of the latter pathway have been characterized as carboxylic and butenald-sorbitol derivatives. The kinetic and spectral data of every step of the process have been fitted by the above outlined mechanism. The energetics of the mechanism has been detailed byab initio computations as well, carrying further substantiation to it. Semi-empirical calculations were also employed to describe the spectral properties of each intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Emmi, M. D’Angelantonio, G. Poggi, M. Russo, G. Beggiato and B. Larsen,J. Phys. Chem. A 106, 4598 (2002).

    Article  CAS  Google Scholar 

  2. M. Russo, L. Sgariglia, M. D’Angelantonio and S. S. Emmi,Res. Chem. Intermed 30, 253 (2004).

    Article  CAS  Google Scholar 

  3. A. Marfak, P. Trouillas, D. P. Allais, C. A. Calliste, J. Cook-Moreau and J. L. Duroux,Radiat. Res. 160, 355 (2003).

    Article  CAS  Google Scholar 

  4. R. Bruckner,Chem. Commun., 141 (2001).

  5. F. C. Gorth, A. Umland and R. Bruckner,Eur. J. Org. Chem., 1055 (1998).

  6. M. Russo, G. Poggi, M. L. Navacchia, M. D’Angelantonio and S. S. Emmi,Res. Chem. Intermed. 32, 153 (2006).

    Article  CAS  Google Scholar 

  7. M. D’Angelantonio, S. S. Emmi, G. Poggi and G. Beggiato,J. Phys. Chem. A 103, 858 (1999).

    Article  Google Scholar 

  8. C. von Sonntag and H.-P. Schuchmann, in:Peroxyl Radicals, Z. B. Alfassi (Ed.), p. 173. Wiley, Chichester (1997).

    Google Scholar 

  9. R. J. Woods and A. K. Pikaev,Applied Radiation Chemistry: Radiation Processing. Wiley, New York, NY (1994).

    Google Scholar 

  10. J. S. Wilson,Radiat. Res. Rev. 4, 71 (1972).

    CAS  Google Scholar 

  11. A. Negron-Mendoza and G. Albarran,Radiat. Phys. Chem. 42, 973 (1993).

    Article  CAS  Google Scholar 

  12. R. H. Schuler, G. Albarran, J. Zajicek, M. V. George, R. W. Fessenden and I. Carmichel,J. Phys. Chem. A 106, 12178 (2002).

    Article  CAS  Google Scholar 

  13. C. Chatgilialoglu, C. Ferrei, M. Ballestri, Q. G. Mulazzani and L. Landi,J. Am. Chem. Soc. 122, 4593 (2000).

    Article  CAS  Google Scholar 

  14. C. Chatgilialoglu, A. Altieri and H. Fisher,J. Am. Chem. Soc. 124, 12816 (2002).

    Article  CAS  Google Scholar 

  15. C. Chatgilialoglu, L. Zambonin, A. Altieri, C. Ferreri, Q. G. Mulazzani and L. Landi,Free Radic. Biol. Med. 33, 1681 (2002).

    Article  CAS  Google Scholar 

  16. S. Kratzsch, K. Drossel, H. Sprinz and O. Brede,Arch. Biochem. Biophys. 416, 238 (2003).

    Article  CAS  Google Scholar 

  17. L. Gebicka and J. Didik,Acta Biochim. Polon. 50, 815 (2003).

    CAS  Google Scholar 

  18. I. Jedidi, P. Thérond, S. Zarev, C. Cosson, M. Couturier, C. Massot, D. Jore, M. Gardès-Albert, A. Legrand and D. Bonnefont-Rousselot,Biochemistry 42, 11356 (2003).

    Article  CAS  Google Scholar 

  19. C. Chatgilialoglu, M. Guerra and Q. G. Mulazzani,J. Am. Chem. Soc. 125, 3839 (2003).

    Article  CAS  Google Scholar 

  20. S. S. Emmi, M. D’Angelantonio, G. Poggi, G. Beggiato, N. Camaioni, A. Geri, A. Martelli, D. Pietropaolo and G. Zotti,Res. Chem. Intermed. 24, 1 (1998).

    Article  CAS  Google Scholar 

  21. J. W. T. Spinks and R. J. Woods,An Introduction to Radiation Chemistry, 3rd edn. Wiley, New York, NY (1990).

    Google Scholar 

  22. C. Chatgilialoglu, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.11.3. Gaussian, Pittsburgh, PA (2002).

    Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision B.02. Gaussian, Pittsburgh, PA (2003).

    Google Scholar 

  24. Hypercube,HyperChem ,Rel. 6 for Windows, Molecular Modeling Systems. Hypercube, Waterloo, ON (2000).

    Google Scholar 

  25. Origin,Origin ®,V. 6.1. OriginLab, Northampton MA. (2000).

    Google Scholar 

  26. J. Del Bene and H. H. Jaffe,J. Chem. Phys. 48, 4050 (1968).

    Article  Google Scholar 

  27. N. Camaioni and Q. Mulazzani,Technical Report 8/93. Istituto FRAE-CNR, Bologna (1993).

    Google Scholar 

  28. N. Camaioni, S. S. Emmi and Q. Mulazzani,Technical Report 9/93, V. 1.0. Istituto FRAE-CNR, Bologna (1993).

    Google Scholar 

  29. FACSIMILE for Windows V. 3.0. AEA Technology. Didcot (1998).

  30. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross,J. Phys. Chem. Ref. Data 17, 513 (1998).

    Google Scholar 

  31. D. A. Pratt, J. H. Mills and N. A. Porter,J. Am. Chem. Soc. 125, 5801 (2003).

    Article  CAS  Google Scholar 

  32. G. G. Zhanel, M. Walters, A. Noreddin, L. M. Vercaigne, A. Wierzbowki, J. M. Embil, A. S. Gin, S. Douthwaite and D. J. Hoban,Drugs 62, 1771 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mila D’Angelantonio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poggi, G., D’Angelantonio, M., Russo, M. et al. A kinetic, spectral and theoretical investigation on the role of oxygen in the radiolytic oxidation of a sorbityl cyclic acetal. Res. Chem. Intermed. 34, 1–20 (2008). https://doi.org/10.1007/BF03039131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03039131

Keywords

Navigation