Skip to main content
Log in

Aspects of medical physics of Med-Austron

  • Accelerator and Medical Physics
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Summary

Before starting proton/light ion therapy with the Med-Austron treatment units a transcription of the concepts of photon therapy is necessary: the needed beam directions, the influence of beam geometry on the treatment planning volume, correction factors and properties of solid state detectors. Especially the effects of the active beam scanning must be taken under consideration.

From a medical physicist’s point of view this paper describes the status quo and gives an overview of open questions, which must be answered before starting patient treatment. Arguments for a gantry were presented as well as a comparison of PTVs in photon and proton/light ion therapy.

In the field of dosimetry diamond-, electron-spin-and lyoluminescence detector materials were tested with photons and some of them irradiated with heavy particles like neutrons and protons. The results show that these materials are suitable in general, but detailed measurements must follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt R, Rassow J, Haverkamp U, et al. Physikalisch-technische Perspektiven The physical and technical outlook for neutron therapy in Germany. Strahlenther Onkol 1993;169:171–8.

    PubMed  CAS  Google Scholar 

  2. Catarell M. Good news for a tenth anniversary. Strahlenther Onkol 1990;166:49–51.

    Google Scholar 

  3. Scallier P. The trouble with neutrons. Europ J Cancer 1991;27:225–30.

    Google Scholar 

  4. Linz U, Plans to Use the Cooler Synchrotron Cosy-Jülich for Ion Beam Therapy, Book of Abstracts, Workshop EORTC Heavy-Particle Therapy Group and European Clinical Heavy-Particle Dosimetry Group (ECHED). Brussels, 11–13 March 1993.

  5. Trone D. Proton Linac Designs for Therapy, Book of Abstracts. Workshop EORTC Heavy-Particle Therapy Group and European Clinical Heavy-particle Dosimetry Group (ECHED). Brussels, 11–13 March 1993.

  6. International Commission on Radiation—Units and Measurements. ICRU Report 50. Prescribing and Reporting Photon Beam Therapy, 1993.

  7. Hong L, Goitin M, Buceiolini M, et al. A pencil beam algorithm for proton dose calculation. Phys Med Biol 1996;41:1305–30.

    Article  PubMed  CAS  Google Scholar 

  8. IAEA Absorbed dose determination in photon and electron beams, an international code of practise. Technical reports No.277, IAEA Vienna 1987.

  9. Jäkel O, Hartmann GH, Heeg P. et al. Erfahrungen mit einem Dosimetrieprotokoll für Schwerionen, Medizinische Physik 97 (Hrsg.: R. Schmidt) 1997:145–6

  10. Vatinsky S, Siebers J, Miller D, et al. Proton dosimetry intercomparison. Radiother Oncol. 1996;41:169–77.

    Article  Google Scholar 

  11. Hartmann H. Arbeitskreis Medizin-Physikalische Grundlagen mit Protonen und Schwerionen, Protokoll 5. Sitzung am 18.3.97, Villingen, Schweiz.

  12. AAPM, Task Group 20: Protocol for heavy charged-particle therapy beam dosimetry, 1986, AAPM Report 16.

  13. Vynkier S, Bonnett DE, Jones DTL. Code of practise for clinical proton dosimetry. Radiother Oncol 1991;21:53–63.

    Article  Google Scholar 

  14. Vynkier S, Bonnett DE, Jones DTL. Supplement to the code of practise for clinical proton dosimetry. Radiother Oncol 1994;32:174–9.

    Article  Google Scholar 

  15. Georg D, Haverkamp U, Wiezorek C, et al. ESR Dosimetry on Lyoluminescence Materials, Proceedings of IRPA 9, International Congress on Radiation Protection. Wien 1996.

  16. Ernst K, Deerberg J, Haverkamp U, et al. Dosimetrie mittels Diamant-Detektor im Rahmen der Übernahmemessung nach DIN 6847. Medizinische Physik 97 (Hrsg.: R. Schmidt) 1997;59–60.

  17. Khrunov VS, Martynow SS, Vatnitsky SM, et al. Diamond Detectors in relative Dosimetry of Photon, Electron and Proton Radiation Fields. Radiat Protect Dosim 1990;33:155–7.

    CAS  Google Scholar 

  18. Haverkamp U, Wiezorek C, Pötter R. Dissolution Glow Curve, Radiat Prot Dosim 1990;33:237–8.

    CAS  Google Scholar 

  19. Haverkamp U, Wiezorek C, Pötter R, et al. Experience in LLD during low and high LET radiotherapy. Radiat Prot Dosim 1990;34:269–270.

    CAS  Google Scholar 

  20. Bryant PJ, for the PIMMS Group. Progress of the Proton-Ion Medical Machine Study (PIMMS). Strahlenther Onkol 1999;175(Suppl II):1–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haverkamp, U. Aspects of medical physics of Med-Austron. Strahlenther Onkol 175 (Suppl 2), 4–7 (1999). https://doi.org/10.1007/BF03038874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038874

Key Words

Navigation