Skip to main content
Log in

The relation between the fracture behavior of 4340 bend specimens and the observation of tempered martensite embrittlement

  • Mechanical Behavior
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

V-notched and fatigue precracked Charpy specimens of various sizes, tested in impact and slow bend, were used to study tempered martensite embrittlement in a 4340 steel. When plotted as a function of tempering temperature, the results showed that the magnitude of the toughness decrease caused by embrittlement varied with the type and size of the specimens. Embrittlement was always detected using thin samples but its detection in thick specimens depended on whether or not they contained a precrack. In particular, no embrittlement-associated fall in toughness was observed using standard size precracked samples tested in slow bend. Separation of the shear and flat fracture components of the absorbed energies showed that the variation of shear energy is a major factor contributing to embrittlement. The results are interpreted as indicating that intergranular fracture occurs more as the result of inhibition of plastic flow within the grains rather than directly as the result of the appearance of a low resistance crack path at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Moser:Trans. Am. Soc. Heat Treating, 1925, vol. 7, p. 297.

    Google Scholar 

  2. N. H. Fahey and E. B. Kula:Proc. ASTM, 1963, vol. 63, p. 1147.

    Google Scholar 

  3. C. E. Hartbower and G. M. Orner: Metallurgical Variables Affecting Fracture Toughness in High-Strength Sheet Alloys, Air Force Materials Laboratory Report ASD-TDR-62-868, 1963. AlsoWelding J., 1963, vol. 42, p. 111-S.

  4. M. A. Grossmann:Trans. AIME, 1946, vol. 167, p. 39.

    Google Scholar 

  5. R. L. Rickett and J. M. Hodge:Proc. ASTM, 1951, vol. 51, p. 931.

    CAS  Google Scholar 

  6. L. J. Klinger, W. J. Barnett, R. P. Frohmberg, and A. R. Troiano:ASM Trans. Quart., 1954, vol. 46, p. 1557.

    Google Scholar 

  7. L. S. Castleman, B. L. Averbach, and M. Cohen:ASM Trans. Quart., 1952, vol. 44, p. 240.

    Google Scholar 

  8. B. R. Queneau:Embrittlement of Metals, ASM, Cleveland, Ohio, 1956.

    Google Scholar 

  9. B. R. Banerjee: Fracture Micromechanics in High-Strength Steels, Structure and Properties of Ultrahigh-Strength Steels, STP 370, ASTM, Philadelphia, Pa., 1963.

    Google Scholar 

  10. R. Raring: Load-Deflection Relationships in Slow-Bend Tests of Charpy V-Notch Specimens,Proc. ASTM, 1952, vol. 52, p. 1034.

    Google Scholar 

  11. G. M. Orner and C. E. Hartbower:Welding J., 1960, vol. 39, p. 147-S.

    Google Scholar 

  12. G. M. Orner and C. E. Hartbower:Welding J., 1961, vol. 40, p. 405-S.

    Google Scholar 

  13. A. J. Baker, F. J. Lauta, and R. P. Wei: Relationships Between Microstructure and Toughness in Quenched and Tempered Ultrahigh-Strength Steels, Structure and Properties of Ultrahigh-Strength Steels, STP 370, ASTM, Philadelphia, Pa., 1963.

    Google Scholar 

  14. R. P. Wei: Fracture Toughness Testing in Alloy Development, Fracture Toughness Testing and Its Applications, STP 381, ASTM, Philadelphia, Pa., 1964, p. 279.

    Google Scholar 

  15. F. J. Lauta and E. A. Steigerwald: Influence of Work Hardening Coefficient on Crack Propagation in High-Strength Steels, Air Force Materials Laboratory Report AFML-TR-65-31, 1965.

  16. E. B. Kula and A. A. Anctil: Tempered Martensite Embrittlement and Fracture Toughness in 4340 Steel, Watertown Arsenal Report AMRA TR 67-03, 1967.

  17. W. J. Harris, J. A. Rinebolt, and R. Raring:Welding J., 1951, vol. 30, p. 417-S.

    Google Scholar 

  18. C. E. Hartbower:Welding J., 1957, vol. 36, p. 494-S.

    Google Scholar 

  19. C. E. Hartbower:Proc. ASTM, 1956, vol. 56, p. 521.

    Google Scholar 

  20. C. Wells and W. B. Triplett: Energy of Crack Formation and Crack Propagation Under Impact, Progress Reports on Air Force Materials Laboratory Contract AF33(616)-5830, 1960.

  21. J. D. Lubahn:Welding J., 1955, vol. 34, p. 518-S.

    Google Scholar 

  22. J. D. Lubahn:Welding J., 1956, vol. 35, p. 557-S.

    Google Scholar 

  23. C. A. Griffis and J. W. Spretnak: An Analysis of the Energy Absorption and Fracture Process in Conventional Notched Bars of AISI 4340 Steel as a Function of Tensile Strength, Air Force Materials Laboratory Report AFML-TR-69-104, 1969.

  24. J. M. Capus:J. Iron Steel Inst., 1963, vol. 201, p. 53.

    Google Scholar 

  25. J. H. Bucher, G. W. Powell, and J. W. Spretnak:A Micro-Fractographic Analysis of Fracture Surfaces in Some Ultrahigh-Strength Steels, Application of Fracture Toughness Parameters to Structural Materials, p. 323, ed. H. D. Greenberg, Gordon and Breach, N. Y., 1966.

    Google Scholar 

  26. B. S. Lement, B. L. Averbach, and M. Cohen:ASM Trans. Quart., 1954, vol. 46, p. 851.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronald, T.M.F. The relation between the fracture behavior of 4340 bend specimens and the observation of tempered martensite embrittlement. Metall Trans 1, 2583–2592 (1970). https://doi.org/10.1007/BF03038388

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038388

Keywords

Navigation