Skip to main content
Log in

Recrystallization of low-carbon titanium stabilized steel

  • Transformations
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The recrystallization kinetics and microstructure of a low-carbon titanium stabilized steel, cold rolled and annealed in the temperature interval between 800° and 1750°F, were investigated. Recrystallization followed the normal sigmoidal relationship at all temperatures; however, compared to low-carbon steel without the addition of titanium, recrystallization was severely retarded. The longer time required for recrystallization is believed to have occurred primarily as a result of the titanium in solution and to a lesser degree because of the presence of numerous stable precipitate particles. No precipitation occurred during recovery prior to recrystallization to alter the recrystallization kinetics as has been observed in aluminum killed steels. Annealing studies showed that the addition of titanium altered the recrystallization texture in a manner highly favorable for enhanced drawability (high\(\bar R\) values) resulting from an increase in the intensity of the {111∼ component. Heating rate and annealing temperatures were found to exert only a small influence on the recrystallization texture. The influence of titanium on the recrystallization kinetics and grain morphology is discussed in terms of improved properties compared to rimmed and aluminum killed steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Blickwede:ASM Trans., 1968, vol. 61, p. 651.

    Google Scholar 

  2. W. C. Leslie, J. T. Michalak, and F. W. Aul:Iron and Its Dilute Solid Solutions, p. 119, Interscience, New York, 1963.

    Google Scholar 

  3. R. H. Heyer, D. E. McCabe, and J. A. Elias:Flat Rolled Products, III, p. 29, Interscience, New York, 1962.

    Google Scholar 

  4. R. L. Whitely and D. E. Wise:Flat Rolled Products, III, p. 47, Interscience, New York, 1962.

    Google Scholar 

  5. I. L. Dillamore and W. T. Roberts:Met. Rev., 1965, vol. 10, p. 271.

    CAS  Google Scholar 

  6. C. A. Stickels:Trans. TMS-AIME, 1965, vol. 233, p. 1550.

    CAS  Google Scholar 

  7. R. H. Goodenow:ASM Trans., 1966, vol. 59, p. 808.

    Google Scholar 

  8. R. L. Rickett, S. H. Kalin, and J. T. Mackenzie:AIME Trans., 1949, vol. 185, p. 242.

    Google Scholar 

  9. R. L. Solter and C. W. Beattie:AIME Trans., 1951, vol. 191, p. 721.

    Google Scholar 

  10. W. C. Leslie, R. L. Rickett C. L. Dotson, and C. S. Walton:ASM Trans., 1954, vol. 46, p. 1470.

    Google Scholar 

  11. J. T. Michalak and R. D. Schoone:Trans. TMS-AIME, 1968, vol. 242, p. 1149.

    CAS  Google Scholar 

  12. J. F. Held:Mechanical Working and Steel Processing IV, pp. 3–24, AIME, 1969.

  13. H. Yoshida, K. Sasaki, and F. Kanzaki:IDDRG Colloquium, London, 1964.

  14. H. Yoshida: U.S. Patent 3,262,821: July 26, 1966.

  15. K. Sasaki: U. S. Patent 3,239,388: March 8, 1966.

  16. H. Yoshida: U. S. Patent 3,239,389: March 8, 1966.

  17. M. Shimizu, K. Matsukura, N. Takahashi, and Y. Shinagawa: U. S. Patent 3,336,166: August 15, 1967.

  18. P. N. Richards: Iron Steel Inst. Spec. Rept. No. 79, 1963, p. 22.

  19. D. A. Karlyn, R. N. Vieth, and J. L. Forand:Mechanical Working and Steel Processing VII, p. 127, AIME, New York, 1969.

    Google Scholar 

  20. G. F. Comstock, S. F. Urban, and M. Cohen:Titanium in Steel, Pitman Publishing Corp., New York, 1949.

    Google Scholar 

  21. R. H. Goodenow and J. H. Bucher:ASME Trans., J. Basic Eng., 1969, vol. 91D, pp. 603–13.

    Google Scholar 

  22. J. E. Hilliard and J. W. Cahn:Trans. TMS-AIME, 1961, vol. 221, p. 344.

    CAS  Google Scholar 

  23. J. F. Held:Trans. TMS-AIME, 1967, vol. 239, p. 573.

    CAS  Google Scholar 

  24. P. A. Beck and H. Hu:Recrystallization Grain Growth, and Textures, pp. 393–433, ASM, Metals Park, Ohio, 1966.

    Google Scholar 

  25. A. S. Keh:Direct Observation of Imperfections in Crystals, p. 213, Interscience, New York, 1962.

    Google Scholar 

  26. H. Hu:Electron Microscopy and Strength of Crystals, p. 564, Interscience, New York, 1963.

    Google Scholar 

  27. H. Hu:Recovery and Recrystallization of Metals, p. 311, Interscience, New York, 1963.

    Google Scholar 

  28. H. Takechi, H. Kato, and S. Nagashima:Trans. TMS-AIME, 1968, vol. 242, p. 56.

    CAS  Google Scholar 

  29. J. Bennewitz:Arch. Eisenhuettenw., 1962, vol. 33, p. 393.

    CAS  Google Scholar 

  30. F. Haessner and H. Weik:Arch. Eisenhuettenw., 1956, vol. 27, p. 153.

    CAS  Google Scholar 

  31. Report on Cooperative Research of the USA Committee of the International Deep-Drawing Research Group, in Correlation of Dee-Drawing Press Performance with Tensile Properties, Am. Soc. Testing Mater., Spec. Tech. Publ. No. 390, 1965.

  32. K. Kubotera and K. Nakaoka:Mechaicial Working and Steel Processing VI, p. 39, AIME, New York, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodenow, R.H., Held, J.F. Recrystallization of low-carbon titanium stabilized steel. Metall Trans 1, 2507–2515 (1970). https://doi.org/10.1007/BF03038376

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038376

Keywords

Navigation