Skip to main content
Log in

The stacking fault energy dependence of the mechanisms of deformation in Fcc metals

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The influence of stacking fault energy on the choice of deformation mechanisms is considered. Experimental evidence is reviewed to distinguish between the possible mechanisms and a limited analysis of crystal rotations is performed. It is shown that twinning, pencil glide, and the more usual octahedral slip are all mechanisms which could be operative under different conditions of stacking fault energy or temperature but that even if only octahedral slip occurs stacking fault energy may affect slip rotations by influencing the choice of operative slip systems. Using the simplifying assumption that deformation is homogeneous, and applying Bishop and Hill’s maximum work principle to derive possible combinations of slip systems, a set of criteria are developed to indicate the influence of stacking fault energy on the choice from among the available slip systems, and hence on slip rotations. An empirical method of relating stacking fault energy to texture is outlined and the experimental results obtained by this method are compared with results obtained by other methods. are compared with results obtained by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Taylor:S. Timoshenko Anniversary Volume, p. 218, The Macmillan Co., New York, 1938.

    Google Scholar 

  2. G. Sachs:Z. Ver. dent. Ing., 1928, vol. 72, p. 734.

    Google Scholar 

  3. R. E. Smallman:J. Inst. Metallk., 1955-56, vol. 84, p. 10.

    CAS  Google Scholar 

  4. H. Mueller:Oesterr. Akad. Wiss. Math.-Naturw., 1958, vol. 7, p. 117.

    Google Scholar 

  5. H. Hu, R. S. Cline, and S. R. Goodman:J. Appl. Phys., 1961, vol. 32, p. 1392.

    Article  ADS  CAS  Google Scholar 

  6. H. Hu and S. R. Goodman:Trans. TMS-AIME, 1963, vol. 227, p. 1454.

    CAS  Google Scholar 

  7. H. Hu and S. R. Goodman:ibid 1963, vol. 227, p. 627.

    CAS  Google Scholar 

  8. R. E. Smallman and D. Green:Acta Met., 1964, vol. 12, p. 145.

    Article  CAS  Google Scholar 

  9. F. Haessner:Z. Metallk., 1962, vol. 53, p. 403.

    Google Scholar 

  10. H. Hu, R. S. Cline, and S. R. Goodman: Recrystallization Grain Growth and Textures, ASM, 1965, Detroit.

  11. G. Wassermann:Z. Metallk., 1963, vol. 54, p. 61.

    CAS  Google Scholar 

  12. I. L. Dillamore and W. T. Roberts:Acta Met., 1964, vol. 12, p. 281.

    Article  CAS  Google Scholar 

  13. W. Heye and G. Wassermann:Phys. Stat. Sol., 1966, vol. 18, p. K107.

    Article  CAS  Google Scholar 

  14. W. Heye: Proc. Int. Symp., Textures in Research and in Practice, Clausthal, 1968.

  15. T. Leffers:Scripta Met., 1968, vol. 2, p. 447.

    Article  CAS  Google Scholar 

  16. H. Wolf:Z. Naturforsch., 1960, vol. 15a, p. 180.

    ADS  CAS  Google Scholar 

  17. J. F. W. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, p. 1298.

    MATH  CAS  MathSciNet  Google Scholar 

  18. J. F. W. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, p. 414.

    MATH  CAS  MathSciNet  Google Scholar 

  19. D. C. Drucker: Proc. 1st U. S. Cong. App. Mech., 1952, p. 487.

  20. G. Y. Chin and W. L. Mammel:Trans. TMS-AIME, 1967, vol. 239, p. 1400.

    CAS  Google Scholar 

  21. I. L. Dillamore and N. S. Stoloff: Proc. Int. Symp., Textures in Research and in Practice, Clausthal, 1968.

  22. J. F. W. Bishop:J. Mech. Phys. Sol., 1954-55, vol. 3, p. 130.

    Article  ADS  MathSciNet  Google Scholar 

  23. F. R. N. Nabarro:Phil. Mag., 1966, vol. 14, p. 861.

    Article  ADS  CAS  Google Scholar 

  24. I. L. Dillamore, E. Butler, and D. Green:Met. Sci. J., 1968, vol. 2, p. 161.

    Article  Google Scholar 

  25. H. J. Bunge and F. Haessner:J. Appl. Phys., 1968, vol. 39, p. 5503.

    Article  ADS  CAS  Google Scholar 

  26. G. Y. Chin, W. F. Hosford, and D. Mendorf:Proc. Roy. Soc., (London), 1969, vol. A309, p. 433.

    Article  ADS  CAS  Google Scholar 

  27. G. Y. Chin: Proc. Int. Symp., Textures in Research and in Practice, Clausthal, 1968.

  28. A. T. English and G. Y. Chin:Acta Met., 1965, vol. 13, p. 1013.

    Article  CAS  Google Scholar 

  29. I. L. Dillamore, R. E. Smallman, and W. T. Roberts:Phil. Mag., 1964, vol. 9, p. 517.

    Article  ADS  CAS  Google Scholar 

  30. B. E. P. Beeston, I. L. Dillamore, and R. E. Smallman:Met. Sci. J., 1968, vol. 2, p. 12.

    CAS  Google Scholar 

  31. P. S. Dobson, P. J. Goodhew, and R. E. Smallman:Phil. Mag., 1967, vol. 16, p. 9.

    Article  ADS  CAS  Google Scholar 

  32. A. Howie and P. R. Swann:Phil. Mag., 1961, vol. 6, p. 1215. L. M. Brown:ibid, Phil. Mag., 1964, vol. 10, p. 441.

    Article  ADS  CAS  Google Scholar 

  33. M. H. Loretto, L. M. Clareborough, and R. L. Segall:ibid,, 1964, vol. 10, p. 731.

    Article  ADS  CAS  Google Scholar 

  34. E. H. Koster, A. R. Tholen, and A. Howie:ibid,, 1964, vol. 10, p. 1093.

    Article  ADS  Google Scholar 

  35. I. R. Harris, I. L. Dillamore, B. E. P. Beeston, and R. E. Smallman:Phil. Mag., 1966, vol. 14, p. 325.

    Article  ADS  CAS  Google Scholar 

  36. P. Rama Rao and K. Kirshna Rao:J. Appl. Phys., 1968, vol. 39, p. 4563.

    Article  ADS  Google Scholar 

  37. P. C. J. Gallagher and Y. C. Lui:Acta Met., 1969, vol. 17, p. 127.

    Article  CAS  Google Scholar 

  38. B. E. P. Beeston and L. K. France:J. Inst. Metals, 1968, vol. 96, p. 105.

    CAS  Google Scholar 

  39. H. Hu, P. R. Sperry, and P. A. Beck:AIME Trans., 1952, vol. 194, p. 76.

    Google Scholar 

  40. P. Humble, M. H. Loretto, and L. M. Clareborough:Phil. Mag., 1967, vol. 15, p. 297.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I. L. DILLAMORE, formerly with the Department of Physical Metallurgy and Science of Materials, The University of Birmingham, Birmingham, England

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillamore, I.L. The stacking fault energy dependence of the mechanisms of deformation in Fcc metals. Metall Trans 1, 2463–2470 (1970). https://doi.org/10.1007/BF03038371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038371

Keywords

Navigation