Skip to main content
Log in

Nachweis einer strahleninduzierten Produktion von Tumor-Nekrose-Faktor alpha im Ewing-Sarkom RM 82 in vitro und in vivo

Ionizing radiation induces production of tumor necrosis factor α in the Ewing’s sarcoma cell line RM 82 in vitro and in vivo

  • Originalarbeit
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Zusammenfassung

Fragestellung

Die Expression von Zytokinen aus Tumor- und Normalgewebszellen spielt bei der Vermittlung der Strahlenwirkung auf Tumoren eine wichtige Rolle. Tumor-Nekrose-Faktor alpha (TNF α), ein pleiotropes, primär als Monokin beschriebenes Polypeptid, ist durch seine zytotoxische Wirkung auf Tumorzellen sowie durch die Induktion hämorrhagischer Nekrosen von Tumoren von besonderem Interesse. Die vorliegende Arbeit untersucht den Einfluß ionisierender Strahlen auf die tumorzelleigene Expression von TNF α an einer humanen Ewing-Sarkom-Zellinie in vitro und in vivo am Xenograft-Tumor der Nacktmaus.

Material und Methode

Der TNF-α-Protein-und-mRNA-Gehalt der Zellinie RM 82 wurde in vitro mittles “Enhanced Amplified Sensitivity Immunoassay” (EASIA) und semiquantitativer RT-PCR vor und nach Bestrahlung mit Einzeldosen zwischen 2 und 40 Gy zu unterschiedlichen Zeitpunkten (1 bis 72 Stunden nach Bestrahlung) bestimmt. Nach Etablierung der Zellinie auf der Nacktmaus wurde in vivo ebenfalls eine Zeit- und Dosiskorrelation zwischen Bestrahlung und TNF-α-mRNA-Produktion vorgenommen.

Ergebnisse

Die Zellinie RM 82 exprimiert in vitro einen TNF-α-Basisproteinspiegel von 20,1±4,3 pg/ml/106 Zellen. Nach Bestrahlung zeigt sich ein zeit- und dosisabhängiger Anstieg der TNF-α-Expression um das maximal 5,9 fache 24 Stunden nach Bestrahlung mit 20 Gy. Die TNF-α-Produktion auf mRNA-Ebene in vitro zeigt ihr Maximum nach bereits sechs bis zwölf Stunden. Die Eigenschaft der TNF-α-Expression von RM 82 blieb in vivo im Xenograft-Tumor erhalten. Die TNF-α-mRNA nimmt hier ebenfalls mit der Zeit und der Dosis zu: Die maximale Zunahme der Produktion liegt bei zwölf Stunden nach Bestrahlung mit 10 Gy.

Schlußfolgerungen

Die vorliegende Untersuchung zeigt in vitro eine zeit- und dosisabhängige Mehrproduktion von TNF α der Ewing-Sarkom-Linie RM 82 auf Protein- und mRNA-Ebene. Erstmals wird dieses Phänomen auch am In-vivo-System beschrieben. Damit steht ein Modell zur näheren Untersuchung der Bedeutung von TNF α als tumoreigenem “radiation response modifier” zur Verfügung.

Abstract

Aim

The expression of cytokines plays an important role in the transmission of the effects of ionizing radiation to tumor cells and normal tissue. Tumor necrosis factor alpha (TNF α), a pleiotropic monokine, is of special interest because of its cytotoxic effect on tumor cells and the induction of hemorrhagic necrosis in tumors. We examined the influence of ionizing radiation on TNF α production in a human Ewing’s sarcoma cell line in vitro and in vivo.

Methods

The protein and mRNA levels of the Ewing’s sarcoma cell line RM 82 were examined in vitro with „Enhanced Amplified Sensitivity Immunoassay” (EASIA) and semiquantitative RT-PCR before and after treatment with single doses of 2 to 40 Gy, 1 to 72 hours after irradiation. After successful transplantation to nude mice, the time and dose correlation of TNF α mRNA production was examined in vivo.

Results

In vitro, RM 82 had a basal protein level of TNF α of 20.1±4.3 pg/ml/106 cells. We observed a time- and dose-dependent increase of TNF α expression with a maximum of 125 pg/ml/106 (5.9fold) 24 hours after irradiation with 20 Gy. At the mRNA level, the maximal up-regulation occurred 6 to 12 hours after 10 Gy. In vivo, the xenograft tumor maintained the capacity of TNF α expression. Time-and dose-dependency in mRNA production showed a maximum increase 6 hours after treatment with 10 Gy.

Conclusions

The presented experiments show in vitro a dose- and time-dependent up-regulation of TNF α in the Ewing’s sarcoma cell line RM 82 on protein and mRNA level. For the first time this phenomenon was also observed in vivo in a human xenograft tumor. This tumor model could be used for further experiments to examine the role of TNF α as a biologic radiation response modifier in human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Barbuto, A. J., E. M. Hersh: Role of cytokines in cancer therapy. In: Aggarwal, B. B., R. K. Puri (eds.): Human cytokines: Their role in disease and therapy. Blackwell Science, Cambridge, USA 1995, p. 503–524.

    Google Scholar 

  2. Bertolini, D. R., G. E. Nedwin, T. S. Bringman: Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors. Nature (Lond.) 319 (1986), 516–518.

    Article  CAS  Google Scholar 

  3. Carswell, E. A., I. L. J. Old, R. L. Kassel: An endotoxin induced serum factor which causes necrosis of tumors. Proc. nat. Acad. Sci. (Wash.) 72 (1975), 3666–3670.

    Article  CAS  Google Scholar 

  4. Chomczynski, P., N. Sacchi: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162 (1987), 156–159.

    Article  PubMed  CAS  Google Scholar 

  5. Creasy, A. A., M. T. Reynolds, W. Laird: Cures and partial regression of murine and human tumors by recombinant human tumor necrosis factor. Cancer Res. 46 (1986), 5687–5690.

    Google Scholar 

  6. Dockhorn-Dworniczak, B., C. Poremba, R. Dantcheva: Rapid detection of loss of heterozygosity of chromosome 17p by polymerase chain reaction-based variable number of tandem repeat analysis and detection of single-strand conformation polymorphism of intragenic p53 polymorphisms. Virchows Arch. A 424 (1994), 337–342.

    CAS  Google Scholar 

  7. Dockhorn-Dworniczak, B., S. Schröder, R. Dantcheva: The role of p53 tumor suppressor gene in human thyroid cancer. Exp. clin. Endocr. 101 (1993), 39–46.

    Article  Google Scholar 

  8. Doukas, M. A., V. Gallicchio: Role of cytokines in modulation of radiation injury. In: DeVita, V. T., S. Hellman, S. A. Rosenberg (eds.): Biologic therapy of cancer. Lippincott, Philadelphia 1995, p. 565–582.

    Google Scholar 

  9. Fiers, W.: Biologic therapy with TNF: Preclinical studies. In: DeVita, V. T., S. Hellman, S. A. Rosenberg (eds.): Biologic therapy of cancer. Lippincott, Philadelphia 1995, p. 295–328.

    Google Scholar 

  10. Fraker, D. I., H. R. Alexander, H. I. Pass: Biologic therapy with TNF: Systemic administration and isolation-perfusion. In: DeVita, V. T., S. Hellman, S. A. Rosenberg (eds.): Biologic therapy of cancer. Lippincott, Philadelphia 1995, p. 329–346.

    Google Scholar 

  11. Fransen, L., D. H. J. Van, R. Ruysschaert: Recombinant tumor necrosis factor: Its effects and synergism with interferon-gamma on a variety of normal and transformed human cell lines. Europ. J. Cancer clin. Oncol. 22 (1986), 419–426.

    Article  PubMed  CAS  Google Scholar 

  12. Goldmann, D., C. R. Merril: Silver staining of DNA in polyacrylamid gels: Linearity and effect of fragment size. Electrophoresis 3 (1992), 24–26.

    Article  Google Scholar 

  13. Gridley, D. S., S. N. Hammond, B. H. Liwnicz: Tumor necrosis factor-α augments radiation effects against human colon tumor xenografts. Anticancer Res. 14 (1994), 1107–1112.

    PubMed  CAS  Google Scholar 

  14. Hallahan, D. E., M. A. Beckett, D. Kufe: The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int. J. Radiat. Oncol. Biol. Phys. 19 (1990), 69–74.

    PubMed  CAS  Google Scholar 

  15. Hallahan, D. E., A. Haimouits-Friedman, D. W. Kufe, Z. Fuks, R. R. Weichselbaum: The role of cytokines in radiation oncology. In: DeVita, V. T., S. Hellman, S. A. Rosenberg (eds.): Important advances in oncology 1993. Lippincott, Philadelphia 1993, p. 71–80.

    Google Scholar 

  16. Hallahan, D. E., D. R. Spriggs, M. A. Beckett: Increased tumor necrosis factor α mRNA after cellular exposure to ionizing radiation. Proc. nat. Acad. Sci. (Wash.) 86 (1989), 10104–10107.

    Article  CAS  Google Scholar 

  17. Hand, A. M., K. Husgafvel Pursiainen, L. Temmilehto: Malignant mesothelioma: The antiproliferative effect of cytokine combinations on three human mesothelioma cell lines. Cancer Lett. 58 (1991) 205–210.

    Article  PubMed  CAS  Google Scholar 

  18. Haranaka, K., N. Satomi: Cytotoxic activity of tumor necrosis factor (TNF) on human cancer cells in vitro. Jap. J. exp. Med. 51 (1981), 191–194.

    PubMed  CAS  Google Scholar 

  19. Hersh, E. M., B. S. Metch, F. M. Muggia: Phase II studies of recombinant human tumor necrosis factor alpha in patients with malignant disease: A summary of the Southwest Oncology Group experience. J. Immunother. 10 (1991), 426–431.

    Article  PubMed  CAS  Google Scholar 

  20. Larrick, J. W., S. Wright: Cytotoxic mechanism of tumor necrosis factor-α. FASEB J. 4 (1990), 3215–3223.

    PubMed  CAS  Google Scholar 

  21. Lattime, E. C., A. Stoppacciaro, A. Khan: Human natural cytotoxic activity mediated by tumor necrosis factor: Regulation by interleukin-2. J. nat. Cancer Inst. 80 (1988), 1035–1038.

    Article  PubMed  CAS  Google Scholar 

  22. Leibovich, S. J.: Role of cytokines in the progress of tumor angiogenesis. In: Aggarwal, B. B., R. K. Puri (eds.): Human cytokines: Their role in disease and therapy. Blackwell Science, Cambridge, USA 1995, p. 539–564.

    Google Scholar 

  23. Leibovich, S. J., P. J. Polverini, H. M. Shepard. Macrophage-induced angiogenesis is mediated by tumor necrosis factor alpha. Nature (Lond.) 329 (1987), 630–632.

    Article  CAS  Google Scholar 

  24. Lejeune, F. J.: High dose recombinant tumour necrosis factor (rTNFα) administered by isolation perfusion for advanced tumours of the limbs: A model for biochemotherapy of cancer. Europ. J. Cancer 31A (1995), 1009–1016.

    Article  CAS  Google Scholar 

  25. Lugassy, C., J. P. Escande: Immunolocation of TNF-α/cachectin in human melanoma cells: Studies on co-cultivated malignant melanoma. J. invest. Derm. 96 (1987), 238–242.

    Article  Google Scholar 

  26. McBride, W. H., J. S. Economou, N. Kuber, J.-H. Hong, C.-S. Chiang, R. Syljuasen, S. T. Dougherty, G. J. Dougherty: Modification of tumor microenvironment by cytokine gene transfer. Acta oncol. 34 (1995), 447–451.

    Article  PubMed  CAS  Google Scholar 

  27. Müller, H., M. Takeshita, J. Krause, K. Schuster, M. Kihuchi, H. J. Stutte: Immunhistochemischer in situ-Nachweis von Zytokinen in Hodgkin- und Non-Hodgkin-Lymphomen. Verh. dtsch. Ges. Path. 76 (1992), 164–168.

    Google Scholar 

  28. Mullis, K. B., F. A. Faloona: Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Meth. Enzymol. 155 (1987), 335–350.

    Article  PubMed  CAS  Google Scholar 

  29. Naylor, M. S., S. T. A. Malik, G. W. H. Stamp: In situ detection of tumor necrosis factor in human ovarian cancer specimens. Int. J. Cancer 26 (1990), 1027–1030.

    CAS  Google Scholar 

  30. Nishiguchi, I., V. Willingham, L. Milas: Tumor necrosis factor as an adjunct to fractionated radiotherapy in the treatment of murine tumors. Int. J. Radiat. Oncol. Biol. Phys. 18 (1989), 555–558.

    Google Scholar 

  31. Old, L. J.: Antitumor activity of microbial products and tumor necrosis factor. In: Bonavida, B., G. E. Gifford, H. Kirchner, L. J. Old (eds.): Tumor necrosis factor/cachectin and related cytokines. Karger, Basel 1988, p. 7–19.

    Google Scholar 

  32. Parks, R. R., S. D. Yan, C. C. Huang: Tumor necrosis factor-alpha production in human head and neck squamous cell carcinoma. Laryngoscope 104 (1994), 860–864.

    PubMed  CAS  Google Scholar 

  33. Rashtchian, A.: Amplification of RNA. PCR Meth. and Appl. 4 (1994). 583–591.

    Google Scholar 

  34. Rinehart, J., S. P. Balcerzak, M. E. Hersh: Phase II trial of tumor necrosis factor in human sarcoma. Proc. Amer. Soc. clin. Oncol. 9 (1990), 317.

    Google Scholar 

  35. Rodemann, H. P., M. Bamberg: Cellular basis of radiation-induced fibrosis. Radiother. Oncol. 35 (1995), 83–90.

    Article  PubMed  CAS  Google Scholar 

  36. Schaadt, M., M. Pfreundschuh, G. Lorscheidt: Phase II-study of recombinant human tumor necrosis factor in colorectal carcinoma. J. biol. Response Modif. 9 (1990), 247–250.

    CAS  Google Scholar 

  37. Sersa, G., V. Willingham, L. Milas: Anti-tumor effects of tumor necrosis factor alone or combined with radiotherapy. Int. J. Cancer 42 (1988), 129–134.

    Article  PubMed  CAS  Google Scholar 

  38. Shimomura, K., T. Manda, S. Mukumoto: Recombinant human tumor necrosis factor-alpha: thrombus formation is a cause of antitumor activity. Int. J. Cancer 41 (1988), 243–247.

    Article  PubMed  CAS  Google Scholar 

  39. Skillings, J., R. Wierzbicki, E. Eisenhauer: A phase II study of recombinant tumor necrosis factor in renal cell carcinoma: A study of the National Cancer Institute of Canada Clinical Trials Group. J. Immunother. 11 (1992), 67–70.

    Article  PubMed  CAS  Google Scholar 

  40. Suematsu, S., T. Kishimoto: Autocrine and paracrine role of cytokines as growth factors for tumor genesis. In: Aggarwal, B. B., R. K. Puri (eds.): Human cytokines: Their role in disease and therapy. Blackwell Science, Cambridge, USA 1995, p. 525–538.

    Google Scholar 

  41. Sugarman, B. J., B. B. Aggarwal, P. E. Hass: Recombinant human tumor necrosis factor-alpha: Effects on proliferation of normal and transformed cells in vitro. Science 230 (1985), 943–945.

    Article  PubMed  CAS  Google Scholar 

  42. Takeyama, H., N. Wakamiya, C. O’Hara: Tumor necrosis factor expression by human ovarian carcinoma in vivo. Cancer Res. 51 (1991), 4476–4480.

    PubMed  CAS  Google Scholar 

  43. Tracey, K. J., A. Cerami: Tumor necrosis factor: A pleitropic cytokine and therapeutic target. Ann. Rev. Med. 45 (1994), 491–503.

    Article  PubMed  CAS  Google Scholar 

  44. Truitt, R. L., C. A. Keever, E. C. Borden: Role of IL-4, IL-6, and IL-12 in cancer therapy. In: DeVita, V. T., S. Hellman, S. A. Rosenberg (eds.): Biologic therapy of cancer. Lippincott, Philadelphia 1995, p. 279–294.

    Google Scholar 

  45. Vanhaesebroeck, B., M. Mareel, F. v. Roy, J. Grooten, W. Fiers: Expression of the tumor necrosis factor gene in tumor cells correlates with reduced tumor genicity and reduced invasiveness in vivo. Cancer Res. 51 (1991), 2229–2238.

    PubMed  CAS  Google Scholar 

  46. Waase, I., M. Bergholz, A. Iglauer: Heterogeneity of tumour necrosis factor production in renal cell carcinoma. Europ. J. Cancer 28 (1992), 1660–1664.

    Article  Google Scholar 

  47. Warner, S. J. C., P. Libby: Human vascular smooth muscle cells: Target for and source of tumour necrosis factor. J. Immunol. 142 (1989), 100–109.

    PubMed  CAS  Google Scholar 

  48. Weichselbaum, R. R.: Cellular and molecular aspects of human tumor radioresistance. In: DeVita, V. T., S. Hellman, S. A. Rosenberg (eds.): Important advances in oncology 1991. Lippincott, Philadelphia 1991, p. 73–83.

    Google Scholar 

  49. Weichselbaum, R. R., M. A. Beckett, D. E. Hallahan, D. W. Kufe, E. E. Vokes: Molecular targets to overcome radioresistance. Semin. Oncol. 11 (1992), 14–20.

    Google Scholar 

  50. Williamson, B. D., E. A. Carswell, B. Y. Rubin: Human tumor necrosis factor produced by human B-cell lines: Synergistic cytotoxic interaction with human interferon. Proc. nat. Acad. Sci. (Wash.) 80 (1983), 5397–5401.

    Article  CAS  Google Scholar 

  51. Wu, S., C. M. Boyer, R. S. Whitaker, A. Berchuck, J. R. Wiener, J. B. Weinberg, R. C. Bast: Tumor necrosis factor α as an autocrine and paracrine growth factor for ovarian cancer: Monokine induction of tumor cell proliferation and tumor necrosis factor α expression. Cancer Res. 53 (1993), 1939–1944.

    PubMed  CAS  Google Scholar 

  52. Yamauchi, N., H. Karizana, H. Watanabe: Intracellular hydroxyl radical production induced by recombinant human tumor necrosis factor. Cancer Res. 49 (1989), 1644–1648.

    Google Scholar 

  53. Zimmerman, R. J., B. J. Marafino, A. Chan, P. Landre, J. L. Winkelhake: The role of oxidant injury in tumor cell sensitivity to recombinant human tumor necrosis factor in vivo. J. Immunol. 142 (1989), 1405–1409.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rübe, C., Finke, C., van Valen, F. et al. Nachweis einer strahleninduzierten Produktion von Tumor-Nekrose-Faktor alpha im Ewing-Sarkom RM 82 in vitro und in vivo. Strahlenther. Onkol. 173, 407–414 (1997). https://doi.org/10.1007/BF03038316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038316

Schlusselwörter

Key words

Navigation