Skip to main content
Log in

Genetische Prädisposition und Strahlenempfindlichkeit bei normalen Geweben

Genetic predisposition and radiosensitivity in normal tissues

  • Originalarbeit
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Nach Strahlenbehandlung von Tumoren werden immer wieder Patienten beobachtet, die starke akute und späte Reaktionen in, normalen Geweben zeigen. Bei diesen Patienten liegt sehr häufig eine genetische Prädisposition vor. Es treten vor allem Defizienzen der DNA-Reparatur und Veränderungen der Regulation des Zellzyklus auf, die zu einer erhöhten Strahlenempfindlichkeit, mit verstärkter Zellabtötung führen.

Methodik

Der Mikronukleus-Test und der Comet Assay scheinen günstige Teste zu sein, um diese erhöhte Strahlenempfindlichkeit zu erfassen. Beide Teste zeichnen sich dadurch aus, daß sie relativ rasch und einfach mit geringen Zellzahlen durchgeführt werden können. Es können mit Hilfe dieses Testes Blutlymphozyten und Fibroblasten untersucht werden.

Ergebnisse

Beide Teste eignen sich insbesondere bei kombinierter Anwendung in hohem Maße, um eine Prädiktion der Strahlenempfindlichkeit normaler Gewebe durchzuführen.

Schlußfolgerung en

Epidemiologische Untersuchungen bei Patienten nach Strahlentherapie weisen verstärkt darauf hin, daß die erhöhte Strahlenempfindlichkeit auch zu einer vermehrten Bildung von Zweittumoren durch ionisierende Strahlen führt. Dieses wird durch entsprechende Tiermodelle unterstützt.

Abstract

Background

After radiotherapy there are always some patients, who develop strong acute and late reactions in normal tissues. In these patients frequently a genetic predisposition is observed. There are found DNA-repair deficiencies and changes in the regulation of the cell cycle which are responsible for the increased radiosensitivity with enhanced cell killing.

Methods

The micronucleus test and the comet assay appear to be appropriate tests in order to measure this increased radiosensitivity. Both tests are characterized by being relatively quick and simple and can be performed with small cell numbers. It is possible to study blood lymphocytes and fibroblasts with these tests.

Results

Both tests can predict the radiosensitivity of normal tissues especially if they are applied in combination.

Conclusions

Epidemiological studies with patients after radiotherapy show evidence that the increased radiosensitivity also causes an enhanced induction of secondary tumors by ionizing radiation. This is supported by corresponding animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bauch, T.: Messung von DNA-Schäden und-Reparatur in Einzelzellen. Inaug.-Diss., Universität-Gesamthochschule Essen 1996.

  2. Bouffler, S. D., C. J. Kemp, A. Balmain, R. Cox: Spontaneous and ionising radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res. 55 (1995), 3883–3889.

    PubMed  CAS  Google Scholar 

  3. Brock, W. A., S. L. Tucker, F. B. Geara, I. Turesson, J. Wike, J. Nyman, L. P. Peters: Fibroblast radiosensitivity versus acute and late normal skin responses in patients treated for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 32 (1995), 1371–1379.

    PubMed  CAS  Google Scholar 

  4. Burnet, N. G., J. Nyman, I. Turesson, R. Wurm, J. R. Yarnold, J. H. Peacock The relationship between cellular radiation sensitivity and tissue response may provide the basis for individualising radiotherapy schedules. Radiother. Oncol. 33 (1994), 228–238.

    Article  PubMed  CAS  Google Scholar 

  5. Cunliffe, P. N., J. R. Mann, A. H. Cameron, K. D. Roberts: Radiosensitivity in ataxia-telangiectasia. Brit. J. Radiol. 48 (1975), 374–376.

    Article  Google Scholar 

  6. Donehower, L. A., M. Harvey, B. L. Slagle et al.: Mice deficient for p53 are developmentally normal but are susceptible to spontaneous tumours. Nature 356 (1992), 215–221.

    Article  PubMed  CAS  Google Scholar 

  7. Eng, C., F. P. Li, D. H. Abramson, R. M. Ellsworth, F. L. Wong M. B. Golman J. Seddon, N. Tarbell, J. D. Boice, Jr., Mortality from second tumors among long-term survivors of retinoblastoma. J. nat. Cancer Inst. 85 (1993), 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  8. Fodde, R., W. Edelmann, K. Yang et al.: A targeted chain-terminating mutation in the mouse Apc gene results in multiple intestinal tumours. Proc. nat. Acad. Sci. (Wash.) 91 (1994), 8969–8973.

    Article  CAS  Google Scholar 

  9. Gantenberg, H.-W., K. Wuttke, C. Streffer, W.-U. Müller: Micronuclei in human lymphocytes irradiated in vitro or in vivo. Radiat. Res. 128 (1991). 276–281.

    Article  PubMed  CAS  Google Scholar 

  10. German, J.: Patterns of neoplasia associated with the chromosome breakage syndromes. In: German, J.: Chromosome mutation and neoplasia. Alan R. Liss, New York 1983, p. 97–134.

    Google Scholar 

  11. Gotoff, S. P., E. Amirmokri, E. J. Liebner: Ataxia telangiectasia: neoplasia, untoward response to X-irradiation, and tuberous sclerosis. Amer. J. Dis. Child., 114 (1967), 617–625.

    PubMed  CAS  Google Scholar 

  12. Harvey, M., M. J. McArthur, C. A. Montgomery et al.: Spontaenous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5 (1993), 225–229.

    Article  PubMed  CAS  Google Scholar 

  13. Jacks, T., T. S. Shih, E. M. Schmitt et al.: Tumour predisposition in mice heterozygous for a targeted mutation in Nfl. Nature Genet. 7 (1994), 353–358.

    Article  PubMed  CAS  Google Scholar 

  14. Kemp, C. J., T. Wheldon, A. Balmain: p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nature Genet. 8 (1994), 66–69.

    Article  PubMed  CAS  Google Scholar 

  15. Little, J. B.: Changing views of cellular radiosensitivity. Radiat. Res. 140 (1994), 299–311.

    Article  PubMed  CAS  Google Scholar 

  16. Loeffler J. S., J. R. Harris, W. K. Dahlberg, J. B. Little: In vitro radiosensitivity of human diploid fibroblasts derived from women with unusually sensitive clinical responses to definitive radiation therapy for breast cancer. Radiat. Res. 121 (1990), 227–231.

    Article  PubMed  CAS  Google Scholar 

  17. Morgan, J. L., T. M. Holcomb, R. W. Morrissey: Radiation reaction in ataxia telangiectasia. Amer. J. Dis. Child. 116 (1968), 557–558.

    PubMed  CAS  Google Scholar 

  18. Moser, A. R., H. C. Pitot, W. F. Dove: A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247 (1990), 322–324.

    Article  PubMed  CAS  Google Scholar 

  19. Müller, W.-U., T. Bauch, C. Streffer, F. Niedereichholz, W. Böcker: Comet assay studies of radiation-induced DNA damage and repair in various tumour cell lines. Int. J. Radiat. Biol. 65 (1994), 315–319.

    Article  PubMed  Google Scholar 

  20. Murnane J. P., L. N. Kapp: A critical look at the association of human genetics syndromes with sensitivity to ionising radiation Semin. Cancer Biol. 4 (1993), 93–104.

    PubMed  CAS  Google Scholar 

  21. Östling, O., K. J. Johanson: Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. biophys. Res. Commun. 123 (1984), 291–298.

    Article  PubMed  Google Scholar 

  22. Roifman, C. M., E. W. Gelfand: Heterogeneity of the immunological deficiency in ataxia-telangiectasia. In: Gatti, R. A., M. Swift: Ataxia-telangiectasia: genetics, neuropathology and immunology of a degenerative disease of childhood. Alan R. Liss, New York 1985, p. 273–285.

    Google Scholar 

  23. Scott, D., A. Spreadborough, E. Levine, S. A. Roberts: Genetic predisposition in breast cancer. Lancet 344 (1994), 1444.

    Article  PubMed  CAS  Google Scholar 

  24. Streffer, C.: Is the micronucleus assay preditive for cellular radiosensitivity? Brit. J. Radiol., Suppl. 24 (1992), 70–73.

    CAS  Google Scholar 

  25. Streffer, C., D. van Beuningen, E. Gross, J. Schabronath, F.-W. Eigler, A. Rebmann: Predictive assays for the therapy of rectum carcinoma. Radiother. Oncol. 5 (1986), 303–310.

    Article  PubMed  CAS  Google Scholar 

  26. Swift, M., D. Morrell, R. B. Massey, C. L. Chase: Incidence of cancer in 161 families affected by ataxia-telangiectasia. New Engl. J Med. 325 (1991), 1831–1836.

    Article  PubMed  CAS  Google Scholar 

  27. Tucker, M. A., A. T. Meadows, J. D. Boice et al.: Cancer risk following treatment of childhood cancer. In: Boice, J. D., J. F. Fraumeni: Radiation carcinogenesis, epidemiology and biological significance. Raven Press, New York, 1984, p. 211–224.

    Google Scholar 

  28. UNSCEAR: Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations. New York 1993.

    Google Scholar 

  29. Weissenborn, U., C. Streffer: Micronuclei with kinetochores in human melanoma cells and rectal carcinomas. Int. J. Radiat. Biol. 59 (1991). 373–383.

    Article  PubMed  CAS  Google Scholar 

  30. Wuttke, K.: Mikronuklei in Lymphozyten als biologischer Indikator für Strahlen-Expositionen. Inaug.-Diss., Universität—Gesamthochschule Essen 1993.

  31. Wuttke, K., C. Streffer W.-U. Müller: Radiation-induced micronuclei in subpopulations of human lymphocytes. Mutat. Res. 286 (1993), 181–188.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Vorgetragen beim 2. Kongreß der Deutschen Gesellschaft für Radioonkologie. 16–19.11.1996, Baden-Baden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streffer, C. Genetische Prädisposition und Strahlenempfindlichkeit bei normalen Geweben. Strahlenther. Onkol. 173, 462–468 (1997). https://doi.org/10.1007/BF03038185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03038185

Schlüsselwörter

Key Words

Navigation