Metallurgical Transactions

, Volume 1, Issue 12, pp 3415–3420 | Cite as

The influence of polycrystal grain size upon the creep ductility of copper

  • R. G. Fleck
  • G. J. Cocks
  • D. M. R. Taplin
Mechanical Behavior

Abstract

A study of the relationship between grain size and creep ductility has been made on OFHC copper when the fracture process involves intergranular cavitation. Tests have been carried out at a constant nominal strain-rate at 10−2 hr−1 at temperatures of 350°, 425°, and 500°C. At all temperatures a peak in the grain size vs ductility plots is obtained at (approximately) 30 μm for 350°C, 60 μm for 435°C, and 150μm for 500°C. The work involved a metallographic study of the fracture process and it is deduced that the final stage of fracture (cavity linkage) controls ductility, rather than either the rate of nucleation or individual growth of cavities. At coarse grain sizes and low temperature the crack length seems to be critical and increasing grain size decreases ductility. At fine grain sizes and high temperature, failure is by a ductile void-sheet process and the volume fraction of cavities is controlling so that decreasing grain size decreases ductility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. R. Barrett, J. L. Lytton, and O. D. Sherby:Trans. TMS-AIME, 1967, vol. 239, p. 170.Google Scholar
  2. 2.
    P. Shahinian and J. R. Lane:Trans. ASM, 1953, vol. 45, p. 177.Google Scholar
  3. 3.
    F. Garofalo, W. F. Domis, and F. von Gemmingen:Trans. TMS-AIME, 1964, vol. 230, p. 1460.Google Scholar
  4. 4.
    F. Garofalo:Creep and Creep-Rupture, The Macmillan Co., New York, 1965.Google Scholar
  5. 5.
    D. M. R. Taplin and V. N. Whittaker:J. Inst. Metals, 1963, vol. 92, p. 426.Google Scholar
  6. 6.
    D. Hull and D. E. Rimmer:Phil. Mag., 1959, vol. 4, p. 673; G. W. Greenwood and R. T. Ratcliffe:Phil. Mag., 1965, vol. 12, p. 59.CrossRefADSGoogle Scholar
  7. 7.
    M. V. Speight and J. E. Harris:Metal Sci. J., 1967, vol. 1, p. 183.Google Scholar
  8. 8.
    P. W. Davies and K. R. Williams:Metal Sci. J., 1969, vol. 3, p. 48.CrossRefGoogle Scholar
  9. 9.
    A. L. Wingrove and D. M. R. Taplin:J. Mater. Sci., 1969, vol 4, p. 789.CrossRefADSGoogle Scholar
  10. 10.
    D. McLean:Progr. Physics, 1966, vol. 29, p. 1.CrossRefGoogle Scholar
  11. 11.
    D. M. R. Taplin:J. Australian Inst. Met., 1965, vol. 10, p. 335.Google Scholar
  12. 12.
    J. A. Williams:Phil. Mag., 1967, vol. 15, p. 1289.CrossRefADSGoogle Scholar
  13. 13.
    R. Söderberg:2nd Int. Conf. on Fracture, Proceedings, paper 318, Chapman & Hall, London, 1969.Google Scholar
  14. 14.
    P. W. Davies and K. R. Williams:J. Inst. Metals., 1969, vol. 97, p. 337.Google Scholar
  15. 15.
    D. M. R. Taplin and L. J. Barket:Acta Met., 1966, vol. 14, p. 1527 G. J. Cocks and D. M. R. Taplin:Metallurgia, 1967, vol. 83, p. 230.CrossRefGoogle Scholar
  16. 16.
    J. Weertman:J. Mech. Phys. Solids, 1956, vol. 4, p. 230.CrossRefADSGoogle Scholar
  17. 17.
    H. Conrad and W. Robertson:AIME Trans., 1957, vol. 206, p. 503;Trans. TMS-AIME, 1958, vol. 212, p. 536.Google Scholar
  18. 18.
    U. Lindbörg:Acta Met., 1969, vol. 17, p. 197.Google Scholar
  19. 19.
    D. M. R. Taplin, G. L. Dunlop, S. Sagat, and R. H. Johnson: Proceedings of the II Inter. American Conference on Materials Technology, Mexico City, 1970, (Amer. Soc. Mech. Engrs. New York), vol. I, p. 253.Google Scholar
  20. 20.
    G. J. Cocks, and D. M. R. Taplin:Scripta Met., 1969, vol. 3, p. 623.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970

Authors and Affiliations

  • R. G. Fleck
    • 1
  • G. J. Cocks
    • 2
  • D. M. R. Taplin
    • 1
  1. 1.Department of Mechanical Engineering, Solid Mechanics DivisionUniversity of WaterlooWaterlooCanada
  2. 2.Department of MetallurgyUniversity of MelbourneAustralia

Personalised recommendations