New Generation Computing

, 23:277 | Cite as

A framework for protein structure prediction on the grid

  • Eduardo HuedoEmail author
  • Ugo Bastolla
  • Rubén S. Montero
  • Ignacio M. Llorente
Regular Papers


The large number of protein sequences, provided by genomic projects at an increasing pace, constitutes a challenge for large scale computational studies of protein structure and thermodynamics. Grid technology is very suitable to face this challenge, since it provides a way to access the resources needed in compute and data intensive applications. In this paper, we show the procedure to adapt to the Grid an algorithm for the prediction of protein thermodynamics, using the GridWay tool. GridWay allows the resolution of large computational experiments by reacting to events dynamically generated by both the Grid and the application.


Bioinformatics Grid Technology Adaptive Scheduling and Execution 


  1. 1).
    Bastolla. U., “Sequence-Structure Alignments with the Protfinder Algorithm,” inAbstracts of the 5th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction, Dec. 2002, Available at Scholar
  2. 2).
    Bastolla, U., Farwer, J., Knapp, E. W. and Vendruscolo, M., “How to Guarantee Optimal Stability for Most Protein Native Structures in the Protein Data Bank,”Proteins: Structure, Function, and Genetics, 44, pp. 79–96, 2001.CrossRefGoogle Scholar
  3. 3).
    Bastolla, U., Moya, A., Viguera, E. and Ham, R. van, “Genomic Determinants of Protein Folding Thermodynamics in Prokanotic Organisms,”Journal of Molecular Biology, 343, 5, pp. 1451–1466, 2004.CrossRefGoogle Scholar
  4. 4).
    Bastolla, U., Roman, H. E. and Vendruscolo, M., “Neutral Evolution of Model Proteins: Diffusion in Sequence Space and Overdispersion,”Journal of Theoretical Biology, 200, pp. 49–64, 1999.CrossRefGoogle Scholar
  5. 5).
    Bastolla, U., Vendruscolo, M. and Knapp, E. W., “A Statistical Mechanical Method to Optimize Energy Parameters for Protein Folding,” inProc. of the National Academy of Sciences (PNAS) of USA, 97, pp. 3977–3981, 2000.Google Scholar
  6. 6).
    Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A. and Zagorodnov, D., “Adaptive Computing on the Grid Using AppLeS,”IEEE Transactions on Parallel and Distributed Systems, 14, 4, pp. 369–382, 2003.CrossRefGoogle Scholar
  7. 7).
    Buyya, R., Abramson, D. and Giddy, J., “Nimrod/G: An Architecture for a Resource Management and Scheduling System in a Global Computation Grid,” inProc. of the 4th IEEE International Conference on High Performance Computing in Asia-Pacific Region (HPC Asia), IEEE Computer Society Press, pp. 283–289, 2000.Google Scholar
  8. 8).
    Casanova, H., Legrand, A., Zagorodnov, D. and Berman, F., “Heuristics for Scheduling Parameter Sweep Applications in Grid Environments,” inProc. of the 9th Heterogeneous Computing Workshop, IEEE Computer Society Press, pp. 349–363, 2000.Google Scholar
  9. 9).
    El-Ghazawi, T., Gaj, K., Alexandinis, N. and Schott, B., “Conceptual Comparative Study of Job Management Systems,” Technical report, George Mason University, Feb. 2001, Available at Scholar
  10. 10).
    Epema, D. H. J., Livny, M., Dantzig, R van., Evers, X. and Pruyne, J., “A Worldwide Flock of Condors: Load Sharing among Workstation Clusters,”Future Generation Computer Systems, 12, 1, pp. 53–65, 1996.CrossRefGoogle Scholar
  11. 11).
    Foster, I. and Kesselman, C., “Globus: A Metacomputing Infrastructure Toolkit,”International Journal of Supercomputer Applications, 11, 2, pp. 115–128, 1997.CrossRefGoogle Scholar
  12. 12).
    Gutin, A. M., Abkevich, V. I. and Shakhnovich, E. I., “Evolution-Like Selection of Fast-Folding Model Proteins,” inProc. of National Academy of Sciences (PNAS) of USA, 92, pp. 1282–1286, 1995.Google Scholar
  13. 13).
    Ham, R. van, Kamerbeek, J., Palacios, C., Rausell, C., Abascal, F., Bastolla, U., Fernandez, J. M., Jimenez, L., Postigo, M., Silva, F. J., Tamames, J., Viguera, E., Latorre, A., Valencia, A., Morán, F. and Moya, A., “Reductive Genome Evolution in Buchnera Aphidicola,” inProc. of National Academy of Sciences (PNAS) of USA, 100, pp. 581–586, 2003.Google Scholar
  14. 14).
    Huedo, E., Montero, R. S. and Llorente, I. M., “A Framework for Adaptive Execution on Grids,”Journal of Software — Practice and Experience, 34, 7, pp. 631–651, 2004.CrossRefGoogle Scholar
  15. 15).
    Huedo, E., Montero, R. S. and Llorente, I. M., “Experiences on Grid Resource Selection Considering Resource Proximity,” inProc. of the 1st European Across Grids Conference, LNCS, 2970, Springer-Verlag, pp. 1–8, Feb. 2003.Google Scholar
  16. 16).
    Lanfermann, G., Allen, G., Radke, T. and Seidel, E., “Nomadic Migration: A New Tool for Dynamic Grid Computing,” inProc. of the 10th IEEE International Symposium on High Performance Distributed Computing (HPDC’01), IEEE Computer Society Press, pp. 429–430, 2001.Google Scholar
  17. 17).
    Montero, R. S., Huedo, E. and Llorente, I. M., “Grid Resource Selection for Opportunistic Job Migration,” inProc. of the 9th International Conference on Parallel and Distributed Computing (Euro-Par 2003), LNCS, 2790, Springer-Verlag, pp. 366–373, Aug. 2003.Google Scholar
  18. 18).
    Nagano, N., Orengo, C. A. and Thornton, J. M., “One Fold with Many Functions: The Evolutionary Relationships Between TIM Barrel Families Based on their Sequences, Structures and Functions,”Journal of Molecular Biology, 321, pp. 741–765, 2002.CrossRefGoogle Scholar
  19. 19).
    Schopf, J. M., “Ten Actions when Superscheduling,”Scheduling Working Group — The Global Grid Forum, GFD-1.4, 2001.Google Scholar
  20. 20).
    Sun Microsystems, “How Sun Grid Engine, Enterprise Edition 5.3 Works,”Technical report, 2002. Available at Scholar

Copyright information

© Ohmsha, Ltd. and Springer 2005

Authors and Affiliations

  • Eduardo Huedo
    • 1
    Email author
  • Ugo Bastolla
    • 1
  • Rubén S. Montero
    • 2
  • Ignacio M. Llorente
    • 2
    • 1
  1. 1.Centro de Astrobiología (CSIC-INTA)Torrejón de ArdozSpain
  2. 2.Dpto. de Arquitectura de Computadores y AutomáticaUniversidad ComplutenseMadridSpain

Personalised recommendations