Skip to main content
Log in

Deformation in locally convex topological linear spaces

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

We are concerned with a deformation theory in locally convex topological linear spaces. Aspecial “nice” partition of unity is given. This enables us to construct certain vector fields which are locally Lipschitz continuous with respect to the locally convex topology. The existence, uniqueness and continuous dependence of flows associated to the vector fields are established. Deformations related to strongly indefinite functionals are then obtained. Finally, as applications, we prove some abstract critical point theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benci, V., Rabinowitz, P. H., Critical point theorems for indefinite functionals, Inv. Math., 1979, 52: 241–273.

    Article  MATH  MathSciNet  Google Scholar 

  2. Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. in Math. 65 AMS, 1986.

  3. Larsen, R., Functional Analysis, New York: Marcel Dekker, Inc., 1973.

    MATH  Google Scholar 

  4. Kryszewski, W., Szulkin, A., Generalized linking theorem with an application to semilinear Schödinger equation, Adv. Diff. Eqs., 1998, 3: 441–472.

    MATH  MathSciNet  Google Scholar 

  5. Ding, Y. H., Girardi, M., Infinitely many homoclinic orbits of a Hamitonian system with symmetry, Nonlinear Analysis, TMA, 1999, 38: 391–415.

    Article  MathSciNet  Google Scholar 

  6. Ding, Y. H., Willem, M., Homoclinic orbits of a Hamiltonian system, Z. Angew. Math. Phys., 1999, 50: 759–778.

    Article  MATH  MathSciNet  Google Scholar 

  7. Graff, R. A., Elements of Non-Linear Functional Analysis, Memoirs AMS, 1978, Vol. 16, No. 206.

  8. Zhang, J. Y., Geometric Theory of Ordinary Equations and Bifurcations (in Chinese), Beijing: Beijing Univ. Press, 1981.

    Google Scholar 

  9. Cerami, G., Un criterio di esistenza per i punti critici su varietá illimitate, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1978, 112: 332–336.

    MathSciNet  Google Scholar 

  10. Bartsch, T., Ding, Y. H., On a nonlinear Schrödinger equations, Math. Ann., 1999, 313: 15–37.

    Article  MATH  MathSciNet  Google Scholar 

  11. Bartsch, T., Ding, Y. H., Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z., 2002, 240: 289–310.

    Article  MATH  MathSciNet  Google Scholar 

  12. Dowker, C. H., An embedding theorem for paracompact metric spaces, Duke Math. J., 1947, 14: 639–645.

    Article  MATH  MathSciNet  Google Scholar 

  13. Michael, E., A note on paracompact spaces, Proc. Amer. Math. Soc., 1953, 4: 831–838.

    Article  MATH  MathSciNet  Google Scholar 

  14. Ambrosetti, A., Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14: 349–381.

    Article  MATH  MathSciNet  Google Scholar 

  15. Chang, K. C., Critical Point Theory and Its Applications (in Chinese), Shanghai: Shanghai Sci. Techn. Press, 1986.

    Google Scholar 

  16. Chang, K. C., Infinitely Dimensional Morse Theory and Multiple Solution Problems, Birkäuser, 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanheng Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y. Deformation in locally convex topological linear spaces. Sci. China Ser. A-Math. 47, 687 (2004). https://doi.org/10.1007/BF03036994

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03036994

Keywords

Navigation