Mathematical model forin vivo pharmacodynamics integrating fluctuation of the response: Application to the prolactin suppressant effect of the dopaminomimetic drug DCN 203–922

Abstract

We propose a general pharmacokinetic-pharmacodynamic model that integrates the rhythmic fluctuation of hormone secretion for the description of the hormone-lowering effect of a drug. The mathematical model takes into account the variation in response observed after administration of a placebo and the drug. It is assumed that the change with time in the physiological response during the placebo period results from fluctuations in the concentration of hypothetical endogenous molecules. The mathematical formulation for predicting the response after drug intake is derived assuming competitive interaction of these “molecules” with the active species for binding to receptors. The suggested “fluctuation model” was implemented in order to describe the time course of the prolactin (PRL) plasma level after administration of two oral doses (2.5 and 5.0 mg) of the dopaminomimetic compound DCN 203–922 (DCN) to 9 healthy male subjects. Its perform ance was compared with that of conventional modeling approaches, in which the circadian changes after placebo are neglected and the hormone baseline is assumed to be constant. The new model provided a better description of the time course of PRL in most subjects. It was used for prediction of the amplitude and duration of the PRL suppressant effect after single and chronic administration of DCN at various dosage regimens as well as after changes in drug absorption.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. van Cauter and S. Retetoff. Multifactorial control of the 24-hour secretory profiles of pituitary hormones.J. Endocrinol. Invest. 8:381–391 (1985).

    PubMed  Article  Google Scholar 

  2. 2.

    W. A. Colburn and D. M. Gibson. Endogenous agonists and pharmacokinetic/pharmacodynamic modeling of baseline effects. In P. D. Kroboth, R. B. Smith, and R. P. Juhl (eds.),Pharmacokinetics and Pharmacodynamics: Vol. 2 Current Problems, Potential Solutions, Harvey Whitney, Cincinnati, OH, 1988, pp. 167–184.

    Google Scholar 

  3. 3.

    N. H. G. Holford and L. B. Sheiner. Understanding the dose-effect relationship: Clinical application of pharmacokinetic-pharmacodynamic models.Clin. Pharmacokin. 6:429–453 (1981).

    CAS  Article  Google Scholar 

  4. 4.

    L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine.Clin. Pharmacol. Ther. 25:358–371 (1979).

    CAS  PubMed  Google Scholar 

  5. 5.

    J. R. Keichel, J. L. Steimer, and A. Frydman. La modélisation pharmacocinétique et pharmacodynamique. In G. Strauch and A. Spriet (eds.),Pharmacologie Clinique: Actualités et Perspectives, Colloque INSERM, Paris, Vol. 156, 1987, pp. 91–118.

  6. 6.

    B. Oosterhuis and C. J. Van Boxtel. Kinetics of drug effects in man.Ther. Drug Monit. 10:121–132 (1988).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    D. R. Stanski, R. J. Hundson, T. D. Homer, L. J. Saidman, and E. Meathe, Pharmacodynamic modeling of thiopental anesthesia.J. Pharmacokin. Biopharm. 12:223–240 (1984).

    CAS  Article  Google Scholar 

  8. 8.

    R. Platzer, R. L. Galeazzi, W. Niederberger, and J. Rosenthaler. Simultaneous modeling of bopindolol kinetics and dynamics.Clin. Pharmacol. Ther. 36:5–13 (1984).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    W. A. Colburn, R. K. Brazzell, and A. A. Holazo. Verapamil pharmacodynamics after intravenous and oral dosing: Theoretic consideration.J. Clin. Pharmacol. 26:71–73 (1986).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    J. Grevel, J. Brownell, J.-L. Steimer, R. C. Gaillard, and J. Rosenthaler. Description of the time course of the prolactin suppressant effect of the dopamine agonist CQP 201–403 by an integrated pharmacokinetic-pharmacodynamic model.Br. J. Clin. Pharmacol. 22:1–13 (1986).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    T. J. O’Leary and P. Abbrecht. Predicting oral anticoagulant response using pharmacodynamic model.Ann. Biomed. Eng. 9:199–216 (1981).

    PubMed  Article  Google Scholar 

  12. 12.

    D. S. Cooper, E. C. Ridgway, B. Kliman, R. N. Kjellberg, and F. Maloof. Metabolic clearance and productions rates of prolactin in man.J. Clin. Invest. 64:1669–1680 (1979).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. 13.

    C. A. DeBoor.Practical Guide to Splines, Springer-Verlag, New York, 1978.

    Google Scholar 

  14. 14.

    D. P. Vaughan and M. Dennis. Mathematical basis of point-area deconvolution, method for determingin vivo input functions.J. Pharm. Sci. 67:663–665 (1978).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    J. Vilain, P. Francheteau, and J.-L. Steimer. Phacin: Un logiciel pour la modélisation compartimentale et l’estimation de paramétres pharmacocinétiques. In F. Grémy (ed.),Journées d’Informatique Médicale de Montpellier, Sauramps Medical, Montpellier, France, 1988, pp. 124–132.

    Google Scholar 

  16. 16.

    L. B. Sheiner. Analysis of pharmacokinetic data using parametric models. I. Regression models.J. Pharmacokin. Biopharm. 12:93–117 (1984).

    CAS  Article  Google Scholar 

  17. 17.

    L. B. Sheiner. Analysis of pharmacokinetic data using parametric models. II. Point estimates of an individual’s parameters.J. Pharmacokin. Biopharm. 13:514–540 (1985).

    Google Scholar 

  18. 18.

    J.-L. Steimer, J.-P. Jais, P. Francheteau, and Y. Plusquellec. Pharmacokinetic modelling with multi-response individual data: Case studies and discussion.Biomed. Meas. Infor. Contr. 2:147–160 (1988).

    Google Scholar 

  19. 19.

    E. van Cauter, M. L’Hermite, G. Copinschi, S. Retetoff, D. Desir, and C. Robyn. Quantitative analysis of spontaneous variations of plasma prolactin in normal man.Am. J. Physiol. 241:E355–363 (1981).

    PubMed  Google Scholar 

  20. 20.

    E. van Cauter. The analysis of 24-hour hormonal profiles. In D. Rodbard and G. Forti (eds.),Computers in Endocrinology, Serono Symposia Publications, Vol. 14, Raven Press, New York, 1984, pp. 313–324.

    Google Scholar 

  21. 21.

    SAS, Statistical Analysis System (Version 5). SAS Institute, Box 8000, Cary, NC 27511, 1985.

  22. 22.

    J. F. Sassin, A. G. Frantz, E. D. Weitzman, and S. Kapen. Human prolactin: 24-hour pattern with increased release during sleep.Science 177:1205–1207 (1972).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    A. G. Frantz. Rhythms in prolactin secretion. In D. T. Krieger (ed.),Endocrine Rhythms, Raven Press, New York, 1979, pp. 175–186.

    Google Scholar 

  24. 24.

    H. C. Porchet, N. L. Benowitz, and L. B. Sheiner. Pharmacodynamic model of tolerance: Application to nicotine.J. Pharmacol. Exp. Ther. 244:231–236 (1988).

    CAS  PubMed  Google Scholar 

  25. 25.

    W. R. Gillespie, P. Veng-Pedersen, E. J. Antal, and J. P. Phillips. A system approach to pharmacodynamics II: Glyburide pharmacodynamics and estimation of optimal drug delivery.J. Pharm. Sci. 77:48–55 (1988).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    J. Unadkat, R. J. Hudson, L. B. Sheiner. Simultaneous modeling of pharmacokinetics and pharmacodynamics with non-parametric kinetic and dynamic models.Clin. Pharmacol. Ther. 40:86–93 (1986).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    F. O’Sullivan and J. O’Sullivan. Deconvolution of episodic hormone data: An analysis of the role of the season on the onset of puberty in cows.Biometrics 44:339–353 (1988).

    PubMed  Article  Google Scholar 

  28. 28.

    P. J. Diggle and S. C. Zeger. A non-gaussian model for time series with pulses.J. Am. Statist. Assoc. 84:354–359 (1989).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Steimer.

Additional information

Part of this work was presented in abstract form at the “Symposium on Variability in Pharmacokinetics and Drug Response,” in Gothenburg (Sweden), October 3–5, 1988.

P. Francheteau holds a research sponsorship from the Centre de Recherche Préclinique of the Laboratoires Sandoz, Rueil-Malmaison, France.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Francheteau, P., Steimer, JL., Dubray, C. et al. Mathematical model forin vivo pharmacodynamics integrating fluctuation of the response: Application to the prolactin suppressant effect of the dopaminomimetic drug DCN 203–922. Journal of Pharmacokinetics and Biopharmaceutics 19, 287–309 (1991). https://doi.org/10.1007/BF03036252

Download citation

Key Words

  • pharmacokinetic-pharmacodynamic model
  • circadian variation
  • placebo
  • hormone
  • dopaminomimetic drug
  • prolactin
  • DCN 203–922
  • spline smoothing
  • simulation