Advertisement

Astrophysics

, Volume 40, Issue 2, pp 198–210 | Cite as

Status of physical observables of a friedmann universe in the classical and quantum hamiltonian formalisms

  • Yu. P. Palii
  • V. V. Papoyan
  • V. N. Pervushin
Article
  • 24 Downloads

Abstract

The paper is devoted to an investigation of the relationships between the classical Friedmann cosmology and the Dirac Hamiltonian approach to quantization of the universe, based on the simple but important example of a homogeneous universe filled with excitations of a scalar field. The method of gaugeless reduction is used to completely separate the sector of physical variables from the purely gauge sector, making it possible to find the relationship between cosmological observables in the Friedmann — Einstein sense and observables of the Dirac Hamiltonian formalism in the Narlikar conformai reference frame. Gaugeless reduction enabled us to establish that in the process of reduction, one of the variables of the nonphysical sector is converted into an invariant time parameter and cannot be treated as a dynamical variable in either the functional or the operator approach to quantization. It is shown that in this conversion of a variable into a time parameter, the Hartle-Hawking functional integral is the reason why the wave function of the Wheeler—De Witt (WDW) equation cannot be normalized and why an infinite gauge factor arises. The gaugeless reduction provides a certain recipe for mathematical and physical interpretation of the WDW equation and wave functions, the use of which makes their relationship to observational cosmology clear and transparent. It is shown, in particular, how the WDW wave function describes the Friedmann evolution with respect to proper time.

Keywords

Scalar Field Conformal Time Reduce Phase Space Hamiltonian Reduction Friedmann Universe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. A. M. Dirac,Proc. R. Soc.,A246, 333 (1958);Phys. Rev.,114, 924 (1959).ADSMathSciNetGoogle Scholar
  2. 2.
    R. Arnowitt, S. Deser, and C. W. Misner,Phys. Rev. 117, 1595 (1960).MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    J. A. Wheeler, in:Batelle Recontres: 1967 Lectures in Mathematics and Physics, C. De Witt and J. A. Wheeler (eds.), W. A. Benjamin, New York (1968).Google Scholar
  4. 4.
    B. S. De Witt,Phys. Rev.,160, 1113 (1967).CrossRefADSGoogle Scholar
  5. 5.
    L. D. Faddeev and V. N. Popov,Usp. Fiz. Nauk,111, 427 (1973).Google Scholar
  6. 6.
    M. P. Ryan, Jr., and L. C. Shapley,Homogeneous Relativistic Cosmologies, Princeton Series on Physics, Princeton Univ. Press., Princeton, N.J. (1975).Google Scholar
  7. 7.
    M. P. Ryan,Hamiltonian Cosmology, Lecture Notes in Physics, No. 13, Springer-Verlag, Berlin-Heidelberg-New York (1972).Google Scholar
  8. 8.
    S. A. Gogilidze, A. M. Khvedelidze, and V. N. Pervushin, “On admissible gauges for constrained systems,”JINRPreprint, E2-95-203 (1995);Preprint, ZU-TH-4/95, hep-th 9504154 (1995);Phys. Rev. D,53, 2160 (1996).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    S. A. Gogilidze, A. M. Khvedelidze, and V. N. Pervushin,“On Abelization of first class constraints,”JINRPreprint, E2-95-131, hep-th 9504153 (1995);J. Math. Phys.,37, 1760 (1996).MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A. A. Friedmann,Z. Phys.,10, 377 (1922).CrossRefADSGoogle Scholar
  11. 11.
    J. V. Narlikar, in:Astrofizica e Cosmologia, Gravitazione, Quanti e Relativita, G. Barbera, Florence (1979).Google Scholar
  12. 12.
    K. P. Stanyukovich and V. N. Mel’nikov,Hydrodynamics, Fields, and Constants in the Theory of Gravitation [in Russian], Énergoizdat, Moscow (1973), p. 105.Google Scholar
  13. 13.
    P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva Univ., New York.Google Scholar
  14. 14.
    V. Pervushin, V. Papoyan, S. Gogilidze, et al.,Phys. Lett.,B365, 35 (1996).ADSMathSciNetGoogle Scholar
  15. 15.
    V. Pervushin and T. Towmasjan,Int. J. Mod. Phys.,D4, No. 1, 105–113 (1995).ADSMathSciNetGoogle Scholar
  16. 16.
    A. M. Khvedelidze, V. V. Papoyan, and V. N. Pervushin,Phys. Rev. D,51, 5654 (1995).CrossRefADSGoogle Scholar
  17. 17.
    G. Lavrelashvili, V. A. Rubakow, and P. G. Tinyakov, in:Proceedings of the Fifth Seminar on Quantum Gravity,28 May–1 June 1990, M. A. Markov et al. (eds.), Moscow.Google Scholar
  18. 18.
    J. B. Hartle and S. W. Hawking,Phys. Rev. D,28 (1983).Google Scholar
  19. 19.
    S. A. Hayward,Phys. Rev. D,53, 5664 (1996).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Yu. P. Palii
    • 1
  • V. V. Papoyan
    • 1
  • V. N. Pervushin
    • 1
  1. 1.Joint Institute for Nuclear Research, Dubna, RussiaErevan State UniversityArmenia

Personalised recommendations