Andrologie

, Volume 14, Issue 4, pp 404–411 | Cite as

Cryoconservation du tissue testiculaire chez l’enfant: comment préserver la fertilité chez le jeune garçon?

Fertilité Après Traitement Anti-Cancéreux Préserver la Fertilité: Pour Qi?

Resume

La prise en charge thérapeutique des cancers de l’enfant s’est considérablement améliorée depuis les trente dernières années avec un taux de survie à long terme atteignant les 70%. Cependant, l’amélioration de l’efficacité thérapeutique s’associe à une augmentation des effets indésirables. Parmi les effets morbides, la toxicité sur le tissue gonadique est la plus fréquemment rencontrée et peut entraîner une stérilité définitive à l’âge adulte.

La préservation de la fertilité de l’enfant doit être envisagée avant le début des traitements. Ainsi, chez la petite fille, la congélation et conservation du tissu ovarien s’est mise en place en France depuis quelques années. Chez le jeune garçon pubère, il est possible de proposer une autoconservation de spermatozoïdes obtenus dans un recueil après masturbation.

Cependant, chez le garçon pré pubère ou en cas d’échec au recueil de sperme, une autre stratégie de prise en charge doit être envisagée, elle implique en premier lieu le prélèvement chirurgical du tissue testiculaire avec deux options possible: i) la congélation du tissue testiculaire entier ou ii) la congélation de cellules germinales immatures et/ou de cellules germinales matures (spermatozoïdes).

L’utilisation ultérieure du tissue testiculaire immature cryoconservé pourra s’effectuer soit après maturationin vitro des cellules germinales (spermatogenèsein vitro), soit par transplantation des cellules germinales par greffe autologue voire xénogreffe. Le risque de la greffe autologue est la réintroduction de l’affection maligne chez le patient, alors que la xénogreffe élimine ce risque. Cependant, cette dernière approche soulève d’autres interrogations à la fois d’ordre éthique et biologique.

Mots clés

cancer de l’enfant cellules germinales cryoconservation fertilité maturation in vitro transplantation 

Cryopreservation of testicular tissue in boys: how can the boy’s fertility be preserved?

Abstract

Survival rates for almost all types of childhood cancer have improved over the last 30 years. Estimates suggest that, in 2010, 1 out of 715 adolescents and young adults will be a long-term survivor of childhood cancer. With current therapy, 70% of children are cured. The increased number of survivors has focused attention on the many long-term or late sequelae of treatment. Most of the effects cannot be detected at the end of therapy, but only become apparent with puberty, growth and the normal aging process. Among the various sequelae, gonadal dysfunction is observed and the degree of gonadal damage depends on the type and total doses of chemotherapy and/or radiotherapy. The male gonald is also more sensitive to cancer therapy than the female gonad.

Cryopreservation of ejaculated spermatozoa should be proposed for sexually mature boys. However, when ejaculated semen samples cannot be collected, or in the case of prepubertal boys who are not yet able to produce spermatozoa, another strategy must be used: testicular biopsy associated with cryopreservation of (i) testicular tissue, or (ii) isolated testicular spermatozoa or (iii) immature germ cells. The future use of immature testicular tissue will depend on the development of novel technologies in humans such as germ cellin vitro maturation, or autologous or xenogeneic germ cell transplantation.

Key words

childhood cancer cryopreservation fertility germ cells in vitro maturation transplantation 

References

  1. 1.
    BAHADUR G., CHATTERJEE R., RALPH D.: Testicular tissue cryopreservation in boys. Ethical and legal issues: case report. Hum. Reprod., 2000, 15: 1416–1420.PubMedCrossRefGoogle Scholar
  2. 2.
    BAHADUR G., LING K.L., HART R. et al.: Semen production in adolescent cancer patients. Hum. Reprod., 2002, 17: 2654–2656.PubMedCrossRefGoogle Scholar
  3. 3.
    BAHADUR G., LING K.L., HART R. et al.: Semen quality and cryopreservation in adolescent cancer patients. Hum. Reprod., 2002, 17: 3157–3161.PubMedCrossRefGoogle Scholar
  4. 4.
    BIRCH J.M., MARSDEN H.B., JONES P.H., PEARSON D., BLAIR V.: Improvements in survival from childhood cancer: results of a population based survey over 30 years. Br. Med. J. (Clin. Res. Ed.), 1988, 296: 1372–1376.CrossRefGoogle Scholar
  5. 5.
    BIRCH J.M., ALSTON R.D., QUINN M., KELSEY A.M.: Incidence of malignant disease by morphological type, in young persons aged 12–24 years in England, 1979–1997. Eur. J. Cancer, 2003, 39: 2622–2631.PubMedCrossRefGoogle Scholar
  6. 6.
    BIRCH J.M., ALSTON R.D., KELSEY A.M. et al.: Classification and incidence of cancers in adolescents and young adults in England 1979–1997. Br. J. Cancer, 2002, 87: 1267–1274.PubMedCrossRefGoogle Scholar
  7. 7.
    BRINSTER R.L., ZIMMERMANN J.W.: Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. (USA), 1994, 91: 11298–11302.CrossRefGoogle Scholar
  8. 8.
    BROOK P.F., RADFORD J.A., SHALET S.M., JOYCE A.D., GOSDEN R.G.: Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation. Fertil. Steril., 2001, 75: 269–274.PubMedCrossRefGoogle Scholar
  9. 9.
    BROUGHAM M.F., KELNAR C.J., SHARPE R.M., WALLACE W.H.: Male fertility following childhood cancer: current concepts and future therapies. Asian J. Androl., 2003, 5: 325–337.PubMedGoogle Scholar
  10. 10.
    CENTOLA G.M., KELLER J.W., HENZLER M., RUBIN P.: Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J. Androl., 1994, 15: 608–613.PubMedGoogle Scholar
  11. 11.
    CLIFTON D.K., BREMNER W.J.: The effect of testicular x-irradiation on spermatogenesis in man. A comparison with the mouse. J. Androl., 1983, 4: 387–392.PubMedGoogle Scholar
  12. 12.
    CLOUTHIER D.E., AVARBOCK M.R., MAIKA S.D., HAMMER R.E., BRINSTER R.L.: Rat spermatogenesis in mouse testis. Nature, 1996, 381: 418–421.PubMedCrossRefGoogle Scholar
  13. 13.
    CREMADES N., BERNABEU R., BARROS A., SOUSA M.:In vitro maturation of round spermatids using co-culture on Vero cells. Hum. Reprod., 1999, 14: 1287–1293.PubMedCrossRefGoogle Scholar
  14. 14.
    DE ROOIJ D.G., GROOTEGOED J.A.: Spermatogonial stem cells. Curr. Opin. Cell Biol., 1998, 10: 694–701.PubMedCrossRefGoogle Scholar
  15. 15.
    FENG L.X., CHEN Y., DETTIN L. et al.: Generation andin vitro differentiation of a spermatogonial cell line. Science, 2002, 297: 392–395.PubMedCrossRefGoogle Scholar
  16. 16.
    FISHEL S., ASLAM I., TESARIK J.: Spermatid conception: a stage too early, or a time too soon? Hum. Reprod., 1996, 11: 1371–1375.PubMedGoogle Scholar
  17. 17.
    FREDERICKX V., MICHIELS A., GOOSSENS E. et al.: Recovery, survival and functional evaluation by transplantation of frozen-thawed mouse germ cells. Hum. Reprod., 2004, 19: 948–953.PubMedCrossRefGoogle Scholar
  18. 18.
    GIUILI G., TOMLJENOVIC A., LABRECQUE N. et al.: Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep., 2002, 3: 753–759.PubMedCrossRefGoogle Scholar
  19. 19.
    GRUNDY R., GOSDEN R.G., HEWITT M. et al.: Fertility preservation for children treated for cancer (1): scientific advances and research dilemmas. Arch. Dis. Child., 2001, 84: 355–359.PubMedCrossRefGoogle Scholar
  20. 20.
    HOVATTA O., SILYE R., KRAUSZ T. et al.: Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants. Hum. Reprod., 1996, 11: 1268–1272.PubMedGoogle Scholar
  21. 21.
    HOVATTA O.: Cryopreservation of testicular tissue in young cancer patients. Hum. Reprod. Update, 2001, 7: 378–383.PubMedCrossRefGoogle Scholar
  22. 22.
    HUE D., STAUB C., PERRARD-SAPORI M.H. et al.: Meiotic differentiation of germinal cells in three-week cultures of whole cell population from rat seminiferous tubules. Biol. Reprod., 1998, 59: 379–387.PubMedCrossRefGoogle Scholar
  23. 23.
    IZADYAR F., MATTHIJS-RIJSENBILT J.J., DEN OUDEN K. et al.: Development of a cryopreservation protocol for type A spermatogonia. J. Androl., 2002, 23: 537–545.PubMedGoogle Scholar
  24. 24.
    JAHNUKAINEN K., HOU M., PETERSEN C. et al.: Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer. Res. 2001, 61(2): 706–710.PubMedGoogle Scholar
  25. 25.
    KANATSU-SHINOHARA M., OGONUKI N., INOUE K. et al.: Restoration of fertility in infertile mice by transplantation of cryopreserved male germline stem cells. Hum. Reprod., 2003, 18: 2660–2667.PubMedCrossRefGoogle Scholar
  26. 26.
    LACHAM-KAPLAN O.: In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction, 2004, 128: 147–152.PubMedCrossRefGoogle Scholar
  27. 27.
    LITTLEY M.D., SHALET S.M., BEARDWELL C.G., ROBINSON E.L., SUTTON M.L.: Radiation-induced hypopituitarism is dose-dependent. Clin. Endocrinol. (Oxf), 1989, 31: 363–373.CrossRefGoogle Scholar
  28. 28.
    MCLEAN D.J., RUSSELL L.D., GRISWOLD M.D.: Biological activity and enrichment of spermatogonial stem cells in vitamin A-deficient and hyperthermia-exposed testes from mice based on colonization following germ cell transplantation. Biol. Reprod., 2002, 66: 1374–1379.PubMedCrossRefGoogle Scholar
  29. 29.
    MEACHEM S., VON SCHONFELDT V., SCHLATT S.: Spermatogonia: stem cells with a great perspective. Reproduction, 2001, 121: 825–834.PubMedCrossRefGoogle Scholar
  30. 30.
    MEISTRICH M.L., WILSON G., KANGASNIEMI M., HUHTANIEMI I.: Mechanism of protection of rat spermatogenesis by hormonal pretreatment: stimulation of spermatogonial differentiation after irradiation. J. Androl., 2000, 21: 464–469.PubMedGoogle Scholar
  31. 31.
    MEISTRICH M.L., SHETTY G.: Suppression of testosterone stimulates recovery of spermatogenesis after cancer treatment. Int. J. Androl., 2003, 26: 141–146.PubMedCrossRefGoogle Scholar
  32. 32.
    MERTENS A.C., YASUI Y., NEGLIA J.P. et al.: Late mortality experience in five-year survivors of childhood and adolescent cancer: the Childhood Cancer Survivor Study. J. Clin. Oncol., 2001, 19: 3163–3172.PubMedGoogle Scholar
  33. 33.
    MULLER J., SKAKKEBAEK N.E.: Quantification of germ cells and seminiferous tubules by stereological examination of testicles from 50 boys who suffered from sudden death. Int. J. Androl., 1983, 6: 143–156.PubMedCrossRefGoogle Scholar
  34. 34.
    MULLER J., SONKSEN J., SOMMER P. et al.: Cryopreservation of semen from pubertal boys with cancer. Med. Pediatr. Oncol., 2000, 34: 191–194.PubMedCrossRefGoogle Scholar
  35. 35.
    NAGANO M., AVARBOCK M.R., LEONIDA E.B., BRINSTER C.J., BRINSTER R.L.: Culture of mouse spermatogonial stem cells. Tissue Cell, 1998, 30: 389–397.PubMedCrossRefGoogle Scholar
  36. 36.
    NAGANO M., MCCARREY J.R., BRINSTER R.L.: Primate spermatogonial stem cells colonize mouse testes. Biol. Reprod., 2001, 64: 1409–1416.PubMedCrossRefGoogle Scholar
  37. 37.
    NAGANO M., PATRIZIO P., BRINSTER R.L.: Long-term survival of human spermatogonial stem cells in mouse testes. Fertil. Steril., 2002, 78: 1225–1233.PubMedCrossRefGoogle Scholar
  38. 38.
    NISTAL M., PANIAGUA R.: Occurrence of primary spermatocytes in the infant and child testis. Andrologia, 1984, 16: 532–536.PubMedCrossRefGoogle Scholar
  39. 39.
    OEFFINGER K.C., HUDSON M.M.: Long-term complications following childhood and adolescent cancer: foundations for providing risk-based health care for survivors. CA Cancer J. Clin., 2004, 54: 208–236.PubMedCrossRefGoogle Scholar
  40. 40.
    OGAWA T., DOBRINSKI I., AVARBOCK M.R., BRINSTER R.L.: Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes. Biol. Reprod., 1999, 60: 515–521.PubMedCrossRefGoogle Scholar
  41. 41.
    PARKS J.E., LEE D.R., HUANG S., KAPROTH M.T.: Prospects for spermatogenesis in vitro. Theriogenology, 2003, 59: 73–86.PubMedCrossRefGoogle Scholar
  42. 42.
    POSTOVSKY S., LIGHTMAN A., AMINPOUR D. et al.: Sperm cryopreservation in adolescents with newly diagnosed cancer. Med. Pediatr. Oncol., 2003, 40: 355–359.PubMedCrossRefGoogle Scholar
  43. 43.
    REMONTET L., ESTEVE J., BOUVIER A.M. et al.: Cancer incidence and mortality in France over the period 1978–2000. Rev. Épidemiol. Santé Publique, 2003, 51: 3–30.PubMedGoogle Scholar
  44. 44.
    RIVES N.: Comment identifier le spermatozoide vivant? Andrologie, 2002, 12: 332–341.CrossRefGoogle Scholar
  45. 45.
    SANDERS J.E., HAWLEY J., LEVY W. et al.: Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood, 1996, 87: 3045–3052.PubMedGoogle Scholar
  46. 46.
    SCHLATT S., ROSIEPEN G., WEINBAUER G.F. et al.: Germ cell transfer into rat, bovine, monkey and human testes. Hum. Reprod., 1999, 14: 144–150.PubMedCrossRefGoogle Scholar
  47. 47.
    SCHLATT S.: Spermatogonial stem cell preservation and transplantation. Mol. Cell. Endocrinol., 2002, 187: 107–111.PubMedCrossRefGoogle Scholar
  48. 48.
    SCHLATT S.: Germ cell transplantation. Mol. Cell. Endocrinol., 2002, 186: 163–167.PubMedCrossRefGoogle Scholar
  49. 49.
    SCHMIEGELOW M.L., SOMMER P., CARLSEN E. et al.: Penile vibratory stimulation and electroejaculation before anticancer therapy in two pubertal boys. J. Pediatr. Hematol. Oncol., 1998, 20: 429–430.PubMedCrossRefGoogle Scholar
  50. 50.
    SHALET S.M., TSATSOULIS A., WHITEHEAD E., READ G.: Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J. Endocrinol., 1989, 120: 161–165.PubMedCrossRefGoogle Scholar
  51. 51.
    SHINOHARA T., AVARBOCK M.R., BRINSTER R.L.: Beta1-and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. (USA), 1999, 96: 5504–5509.CrossRefGoogle Scholar
  52. 52.
    SHINOHARA T., INOUE K., OGONUKI N. et al.: Birth of offspring following transplantation of cryopreserved immature testicular pieces andin vitro microinsemination. Hum. Reprod., 2002, 17: 3039–3045.PubMedCrossRefGoogle Scholar
  53. 53.
    SOFIKITIS N., MANTZAVINOS T., LOUTRADIS D. et al.: Ooplasmic injections of secondary spermatocytes for non-obstructive azoospermia. Lancet, 1998, 351: 1177–1178.PubMedCrossRefGoogle Scholar
  54. 54.
    SOMMELET D., LACOUR B., CLAVEL J.: Epidémiologie des cancers de l’enfant. Bull. Acad. Natl. Med., 2003, 187: 711–737.PubMedGoogle Scholar
  55. 55.
    SPEISER B., RUBIN P., CASARETT G.: Aspermia following lower truncal irradiation in Hodgkin’s disease. Cancer, 1973, 32: 692–698.PubMedCrossRefGoogle Scholar
  56. 56.
    SPRADLING A., DRUMMOND-BARBOSA D., KAI T.: Stem cells find their niche. Nature, 2001, 414: 98–104.PubMedCrossRefGoogle Scholar
  57. 57.
    STAUB C., HUE D., NICOLLE J.C. et al.: The whole meiotic process can occur in vitro in untransformed rat spermatogenic cells. Exp. Cell. Res., 2000, 260: 85–95.PubMedCrossRefGoogle Scholar
  58. 58.
    TESARIK J.: Fertilization of oocytes by injecting spermatozoa, spermatids and spermatocytes. Rev. Reprod., 1996, 1: 149–152.PubMedCrossRefGoogle Scholar
  59. 59.
    TESARIK J., GUIDO M., MENDOZA C., GRECO E.: Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. J. Clin. Endocrinol. Metab., 1998, 83: 4467–4473.PubMedCrossRefGoogle Scholar
  60. 60.
    TESARIK J., MENDOZA C., GRECO E.:In vitro maturation of immature human male germ cells. Mol. Cell. Endocrinol., 2000, 166: 45–50.PubMedCrossRefGoogle Scholar
  61. 61.
    THOMSON A.B., CRITCHLEY H.O., WALLACE W.H.: Fertility and progeny. Eur. J. Cancer, 2002, 38: 1634–1644.PubMedCrossRefGoogle Scholar
  62. 62.
    VAN DER WEE K.S., JOHNSON E.W., DIRAMI G., DYM T.M., HOFMANN M.C.: Immunomagnetic isolation and long-term culture of mouse type A spermatogonia. J. Androl., 2001, 22: 696–704.PubMedGoogle Scholar

Copyright information

© Société d’Andrologie de Langue Française 2004

Authors and Affiliations

  1. 1.Laboratoire de Biologie de la Reproduction-CECOSCHU Charles NicolleRouen

Personalised recommendations