, Volume 11, Issue 4, pp 209–220 | Cite as

Etablissement de l’empreinte parentale dans la lignée germinale. Conséquences pour la prise en charge en AMP

  • A. Kerjean
  • M. Jeanpierre
  • P. Jouannet
  • A. Pàldi


L’empreinte parentale est un marquage épigénétique des allèles parentaux et se manifeste par une expression monoallélique de certains gènes dits gènes soumis à empreinte. Le marquage épigénétique des allèles d’un gène soumis à l’empreinte diffère en fonction de l’origine parentale de l’allèle. Ces modifications épigénétiques parents-spécifiques sont nécessaires au développement normal de l’embryon. Elles surviennent dans la lignée germinale et sont transmises par les gamètes. Pour que l’empreinte soit établie selon le sexe de l’individu, le marquage gamétique-spécifique (épigénotype gamétique) doit être réversible et effaçable. L’effacement des modifications épigénétiques survient dans les cellules germinales primordiales (PGCs). Après cette étape d’effacement, une nouvelle empreinte parentale sexe-spécifique est établie dans les lignées germinales mâles et femmelles.

Aussi, parmi les nombreuses questions posées par l’utilisation de gamètes immatures lors de tentatives d’assistance médicale à la procréation (AMP), la question de l’utilisation de gamètes “épigénétiquement immatures” est primordiale. En particulier, les conséquences épigénétiques à long terme pour le fœtus de l’utilisation de gamètes épigénétiquement immatures ne sont pas connues.

Mots clés

Empreinte parentale gamétogenèse AMP 

Imprinting in the germ line. Consequences for assisted reproduction


Genomic imprinting is an epigenetic phenomenon in eutherian mammals that results in the differential expression of the paternally and maternally inherited alleles of a gene. Imprinted genes are necessary for normal mammalian development. Parental specific epigenetic modifications are imprinted on a subset of genes in the mammalian genome during germ cell maturation. Imprinting involves both cytosine methylation within CpG islands and changes in chromatin structure. All such epigenetic modifications are potentially reversible and can be erased. After the erasure step, new parental imprints are initiated, resulting in reintroduction of sex-specific imprints in the male and female germ line.

Although the function of genomic imprinting is not clear, it has been proposed that it evolved in mammals to regulate intrauterine growth and mammalian development. If the epigenotype of individual gametes is directly correlated with their later developmental capacities, genomic imprinting would have important practical implications in reproductive medicine for the use of embryos derived from assisted reproduction.


imprinting gametogenesis assisted reproduction 


  1. 1.
    ADENOT, P. G., MERCIER, Y., RENARD, J. P., THOMPSON, E. M.: Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development, 1997, 124: 4615–4625.PubMedGoogle Scholar
  2. 2.
    AL-HASANI, S., LUDWIG, M., PALERMO, I., KUPKER, W., SANDMANN, J., JOHANNISSON, R., FORNARA, P., STURM, R., BALS-PRATSCH, M., BAUER, O., DIEDRICH, K.: Intracytoplasmic injection of round and elongated spermatids from azzospermic patients: results and review. Hum. Reprod., 1999, 14 (Suppl 1): 97–107.PubMedGoogle Scholar
  3. 3.
    ANTINORI, S., VERSACI, C., DANI, G., ANTINORI, M., POZZA, D., SELMAN, H. A.: Fertilization with human testicular spermatids: four successful pregnancies. Hum Reprod, 1997, 12: 286–91.PubMedCrossRefGoogle Scholar
  4. 4.
    AOKI, F., WORRAD, D. M., SCHULTZ, R. M.: Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol., 1997, 181: 296–307.PubMedCrossRefGoogle Scholar
  5. 5.
    ARAKI, Y., MOTOYAMA, M., YOSHIDA, A., KIM, S. Y., SUNG, H., ARAKI, S.: Intracytoplasmic injection with late spermatids: a successful procedure in achieving childbirth for couples in which the male partner suffers from azoospermia due to deficient spermatogenesis. Fertil. Steril., 1997, 67: 559–61.PubMedCrossRefGoogle Scholar
  6. 6.
    ARIEL, M., CEDAR, H., MCCARREY, J.: Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nat. Genet., 1994, 7: 59–63.PubMedCrossRefGoogle Scholar
  7. 7.
    BALABAN, B., URMAN, B., ISIKLAR, A., ALATAS, C., AKSOY, S., MERCAN, R., NUHOGLU, A.: Progression to the blastocyst stage of embryos derived from testicular round spermatids. Hum. Reprod., 2000, 15: 1377–82.PubMedCrossRefGoogle Scholar
  8. 8.
    BAO, S., OBATA, Y., CARROLL, J., DOMEKI, I., KONO, T.: Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol. Reprod., 2000, 62: 616–21.PubMedCrossRefGoogle Scholar
  9. 9.
    BARLOW, D. P.: Gametic imprinting in mammals. Science, 1995, 270: 1610–3.PubMedCrossRefGoogle Scholar
  10. 10.
    BESTOR, T. H.: The DNA methyltransferases of mammals. Hum. Mol. Genet., 2000, 9: 2395–402.PubMedCrossRefGoogle Scholar
  11. 11.
    BIELINSKA, B., BLAYDES, S. M., BUTTING, K., YANG, T., KRAJEWSKA-WALASEK, M., HORSTHEMKE, B., BRANNAN, C. I.: De novo deletions ofSNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch. Nat. Genet., 2000, 25: 74–78.PubMedCrossRefGoogle Scholar
  12. 12.
    BOURC’HIS, D., XU, G. L., LIN, C. S., BOLLMAN, B., BESTOR, T. H.: Dnmt3L and the Establishment of Maternal Genomic Imprints. Science, 2001, 22: 22.Google Scholar
  13. 13.
    BRANDEIS, M., KAFRI, T., ARIEL, M., CHAILLET, J. R., MCCARREY, J., RAZIN, A., CEDAR, H.: The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. Embo. J., 1993, 12: 3669–3677.PubMedGoogle Scholar
  14. 14.
    BUITING, K., DITTRICH, B., GROSS, S., et al.: Sporadic imprinting defects in Prader-Willi syndrome and Angelman syndrome: implications for imprint-switch models, genetic counseling, and prenatal diagnosis. Am. J. Hum. Genet., 1998, 63: 170–80.PubMedCrossRefGoogle Scholar
  15. 15.
    CHOAVARATANA, R., SUPPINYOPONG, S., CHAIMAHAPHRUKSA, P.: ROSI from TESE the first case in Thailand: a case report. J. Med. Assoc. Thai., 1999, 82: 938–41.PubMedGoogle Scholar
  16. 16.
    DAVIS, T. L., TRASLER, J. M., MOSS, S. B., YANG, G. J., BARTOLOMEI, M. S.: Acquisition of theH19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics, 1999, 58: 18–28.PubMedCrossRefGoogle Scholar
  17. 17.
    DAVIS, T. L., YANG, G. J., MCCARREY, J. R., BARTOLOMEI, M. S.: The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet., 2000, 9: 2885–94.PubMedCrossRefGoogle Scholar
  18. 18.
    DEAN, W., BOWDEN, L., AITCHISON, A., KLOSE, J., MOORE, T., MENESES, J. J., REIK, W., FEIL, R.: Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development, 1998, 125: 2273–82.PubMedGoogle Scholar
  19. 19.
    DOERKSEN, T., TRASLER, J. M.: Developmental exposure of male germ cells to 5-azacytidine results in abnormal preimplantation development in rats. Biol. Reprod., 1996, 55: p1155–62.PubMedCrossRefGoogle Scholar
  20. 20.
    DORER, D. R., HENIKOFF, S.: Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell, 1994, 77: 993–1002.PubMedCrossRefGoogle Scholar
  21. 21.
    EL-MAARRI, O., BUITING, K., PEERY, E. G., KROISEL, P. M., BALABAN, B., WAGNER, K., URMAN, B., HEYD, J., LICH, C., BRANNAN, C. I., WALTER, J., HORSTHEMKE, B.: Maternal methylation imprints on human chromosome 15 are established during or after fertilization. Nat. Genet., 2001, 27: 341–4.PubMedCrossRefGoogle Scholar
  22. 22.
    ENGEMANN, S., STRODICKE, M., PAULSEN, M., FRANCK, O., REINHARDT, R., LANE, N., REIK, W., WALTER, J.: Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum. Mol. Genet., 2000, 9: 2691–706.PubMedCrossRefGoogle Scholar
  23. 23.
    FALLS, J. G., PULFORD, D. J., WYLIE, A. A., JIRTLE, R. L.: Genomic imprinting: implications for human disease. Am. J. Pathol., 1999, 154: 635–47.PubMedGoogle Scholar
  24. 24.
    FEIL, R., KHOSLA, S.: Genomic imprinting in mammals: an interplay between chromatin and DNA methylation? Trends Genet., 1999, 15: 431–5.PubMedCrossRefGoogle Scholar
  25. 25.
    FERGUSON-SMITH, A. C., SURANI, M. A.: Imprinting and the epigenetic asymmetry between parental genomes. Science, 2001, 293: 1086–1088.PubMedCrossRefGoogle Scholar
  26. 26.
    FISHEL, S., ASLAM, I., TESARIK, J.: Spermatid conception: a stage too early, or a time too soon? Hum. Reprod., 1996, 11: 1371–5.PubMedGoogle Scholar
  27. 27.
    FISHEL, S., GREEN, S., HUNTER, A., LISI, F., RINALDI, L., LISI, R., MCDERMOTT, H.: Human fertilization with round and elongated spermatids. Hum. Reprod., 1997, 12: 336–40.PubMedCrossRefGoogle Scholar
  28. 28.
    GHAZZAWI, I. M., ALHASANI, S., TAHER, M., SOUSO, S.: Reproductive capacity of round spermatids compared with mature spermatozoa in a population of azoospermic men. Hum. Reprod., 1999, 14: 736–40.PubMedCrossRefGoogle Scholar
  29. 29.
    HENERY, C. C., MIRANDA, M., WIEKOWSKI, M., WILMUT, I., DEPAMPHILIS, M. L.: Repression of gene expression at the beginning of mouse development. Dev. Biol., 1995, 169: 448–60.PubMedCrossRefGoogle Scholar
  30. 30.
    HOWLETT, S. K., REIK, W.: Methylation levels of maternal and paternal genomes during preimplantation development. Development, 1991, 113: 119–27.PubMedGoogle Scholar
  31. 31.
    JONES, P. L., VEENSTRA, G. L., WADE, P. A., VERMAAK, D., KASS, S. U., LANDSBERGER, N., STROUBOULIS, J., WOLFFE, A. P.: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet., 1998, 19: 187–191.PubMedCrossRefGoogle Scholar
  32. 32.
    JURISICOVA, A., LOPES, S., MERIANO, J., OPPEDISANO, L., CASPER, R. F., VARMUZA, S.: DNA damage in round spermatids of mice with a targeted disruption of the Pp1cgamma gene and in testicular biopsies of patients with non-obstructive azoospermia. Mol. Hum. Reprod., 1999, 5: 323–30.PubMedCrossRefGoogle Scholar
  33. 33.
    KAFRI, T., GAO, X., RAZIN, A.: Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev, 1993, 6: 187–191.Google Scholar
  34. 34.
    KAHRAMAN, S., POLAT, G., SAMLI, M., SOZEN, E., OZGUN, O. D., DIRICAN, K., OZBICER, T.: Multiple pregnancies obtained by testicular spermatid injection in combination with intracytoplasmic sperm injection. Hum. Reprod., 1998, 13: 104–10.PubMedCrossRefGoogle Scholar
  35. 35.
    KANEKO-ISHINO, T., KUROIWA, Y., MIYOSHI, N., KOHDA, T., SUZUKI, R., YOKOYAMA, M., VIVILLE, S., BARTON, S. C., ISHINO, F., SURANI, M. A.:Pegl/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat. Genet., 1995, 11: p52–9.PubMedCrossRefGoogle Scholar
  36. 36.
    KATO, Y., RIDEOUT, W. M., 3RD, HILTON, K., BARTON, S. C., TSUNODA, Y., SURANI, M. A.: Developmental potential of mouse primordial germ cells. Development, 1999, 126: 1823–32.PubMedGoogle Scholar
  37. 37.
    KERJEAN, A., DUPONT, J. M., VASSEUR, C., LE TESSIER, D., CUISSET, L., PALDI, A., JOUANNET, P., JEANPIERRE, M.: Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum. Mol. Genet., 2000, 9: 2183–7.PubMedCrossRefGoogle Scholar
  38. 38.
    KERJEAN, A., JOUVENOT, Y., VALENZA-SCHAERLY, P., GUENATRI, M., JOUANNET, P., JEANPIERRE, M., PÀLDI, A.: Imprinting in the germ line. Ref. Gynecol. Obstet., 2001, 8: 1–6.Google Scholar
  39. 39.
    KHOSLA, S., DEAN, W., BROWN, D., REIK, W., FEIL, R.: Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod., 2001, 64: 918–26.PubMedCrossRefGoogle Scholar
  40. 40.
    KHOSLA, S., DEAN, W., REIK, W., FEIL, R.: Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum. Reprod. Update, 2001, 7: 419–27.PubMedCrossRefGoogle Scholar
  41. 41.
    KIMURA, Y., TATENO, H., HANDEL, M. A., YANAGIMACHI, R.: Factors affecting meiotic and developmental competence of primary spermatocyte nuclei injected into mouse oocytes. Biol. Reprod., 1998, 59: 871–7.PubMedCrossRefGoogle Scholar
  42. 42.
    KIMURA, Y., YANAGIMACHI, R.: Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol. Reprod., 1995, 53: 855–62.PubMedCrossRefGoogle Scholar
  43. 43.
    KIMURA, Y., YANAGIMACHI, R.: Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development, 1995, 121: 2397–405.PubMedGoogle Scholar
  44. 44.
    LABOSKY, P. A., BARLOW, D. P., HOGAN, B. L.: Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development, 1994, 120: 3197–204.PubMedGoogle Scholar
  45. 45.
    LEFEBVRE, L., VIVILLE, S., BARTON, S. C., ISHINO, F., KEVERNE, E. B., SURANI, M. A.: Abnormal maternal behaviour and growth retardation associated with loss of the imprinted geneMest. Nat. Genet., 1998, 20: p163–9.PubMedCrossRefGoogle Scholar
  46. 46.
    LEIGHTON, P. A., INGRAM, R. S., EGGENSCHWILER, J., EFSTRATIADIS, A., TILGHMAN, S. M.: Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature, 1995, 375: 34–9.PubMedCrossRefGoogle Scholar
  47. 47.
    LEVRAN, D., NAHUM, H., FARHI, J., WEISSMAN, A.: Poor outcome with round spermatid injection in azoospermic patients with maturation arrest. Fertil. Steril., 2000, 74: 443–9.PubMedCrossRefGoogle Scholar
  48. 48.
    MANN, M. R., BARTOLOMEI, M. S.: Maintaining imprinting. Nat Genet, 2000, 25: 4–5.PubMedCrossRefGoogle Scholar
  49. 49.
    MCCAULEY, E., ITO, J., KAY, T.: Psychosocial functioning in girls with Turner’s syndrome and short stature: social skills, behavior problems, and self-concept. J. Am. Acad. Child Psychiatry, 1986, 25: 105–12.PubMedCrossRefGoogle Scholar
  50. 50.
    MCCAULEY, E., KAY, T., ITO, J., TREDER, R.: The Turner syndrome: cognitive deficits, affective discrimination, and behavior problems. Child. Dev., 1987, 58: 464–73.PubMedCrossRefGoogle Scholar
  51. 51.
    MCGRATH, J., SOLTER, D.: Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37: 179–183.PubMedCrossRefGoogle Scholar
  52. 52.
    MERTINEIT, C., YODER, J. A., TAKETO, T., LAIRD, D. W., TRASLER, J. M., BESTOR, T. H.: Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development, 1998, 125: 889–97.PubMedGoogle Scholar
  53. 53.
    MILLER, A. P., WILLARD, H. F.: Chromosomal basis of X chromosome inactivation: identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proc. Natl. Acad. Sci. USA, 1998, 95: 8709–14.PubMedCrossRefGoogle Scholar
  54. 54.
    MONK, M., BOUBELIK, M., LEHNERT, S.: Temporal and regional changes in DNA methylation in the embryonix, extraembryonic and germ cell lineages during mouse embryo development. Development, 1987, 99: 371–382.PubMedGoogle Scholar
  55. 55.
    MOORE, T., REIK, W.: Genetic conflict in early development: parental imprinting in normal and abnormal growth. Rev. Reprod., 1996, 1: 73–7.PubMedCrossRefGoogle Scholar
  56. 56.
    NAGY, A., ROSSANT, J., NAGY, R., ABRAMOW-NEWERLY, W., RODER, J. C.: Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA, 1993, 90: 8424–8.PubMedCrossRefGoogle Scholar
  57. 57.
    NEUMANN, B., KUBICKA, P., BARLOW, D. P.: Characteristics of imprinted genes. Nat. Genet., 1995, 9: 12–3.PubMedCrossRefGoogle Scholar
  58. 58.
    OBATA, Y., KANEKO, I. T., KOIDE, T., TAKAI, Y., UEDA, T., DOMEKI, I., SHIROISHI, T., ISHINO, F., KONO, T.: Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development, 1998, 125: 1553–60.PubMedGoogle Scholar
  59. 59.
    OGURA, A., MATSUDA, J., YANAGIMACHI, R.: Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc. Natl. Acad. Sci. USA, 1994, 91: 7460–2.PubMedCrossRefGoogle Scholar
  60. 60.
    OGURA, A., YANAGIMACHI, R.: Round spermatid nuclei injected into hamster oocytes from pronuclei and participate in syngamy. Biol Reprod, 1993, 48: 219–25.PubMedCrossRefGoogle Scholar
  61. 61.
    OGURA A., YANAGIMACHI, R.: Spermatids as male gametes. Reprod Fertil Dev, 1995, 7: 155–8.PubMedCrossRefGoogle Scholar
  62. 62.
    OGURA, A., YANAGIMACHI, R., USUI, N.: Behaviour of hamster and mouse round spermatid nuclei incorporated into mature oocytes by electrofusion. Zygote, 1993, 1: 1–8.PubMedCrossRefGoogle Scholar
  63. 63.
    OKANO, M., BELL, D. W., HABER, D. A., LI, E.: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99: 247–257.PubMedCrossRefGoogle Scholar
  64. 64.
    PALDI, A., JOUVENOT, Y.: Allelic trans-sensing and imprinting. Results Probl. Cell Differ., 1999, 25: 271–82.PubMedGoogle Scholar
  65. 65.
    PINYOPUMMINTR, T., BAVISTER, B. D.: In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol. Reprod., 1991, 45: 736–42.PubMedCrossRefGoogle Scholar
  66. 66.
    PRAPAS, Y., CHATZIPARASIDOU, A., VANDERZWALMEN, P., NIJS, M., PRAPAS, N., LEJEUNE, B., VLASSIS, G., SCHOYSMAN, R.: Spermatid injection: reconsidering spermatid injection. Hum. Reprod., 1999, 14: 2186–8.PubMedCrossRefGoogle Scholar
  67. 67.
    RAZIN, A., SHEMER, R.: DNA methylation in early development. Hum Mol Genet, 1995, 4: 1751–5.PubMedGoogle Scholar
  68. 68.
    REIK, W., BROWN, K. W., SCHNEID, H., LE BOUC, Y., BICKMORE, W., MAHER, E. R.: Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet, 1995, 4: 2379–85.PubMedCrossRefGoogle Scholar
  69. 69.
    REIK, W., DEAN, W., WALTER, J.: Epigenetic reprogramming in mammalian development. Science, 2001, 293: 1089–1092.PubMedCrossRefGoogle Scholar
  70. 70.
    REIK, W., WALTER, J.: Genomic imprinting: parental influence on the genome. Nature Genet. Reviews, 2001, 2: 21–32.CrossRefGoogle Scholar
  71. 71.
    REIK, W., WALTER, J.: Imprinting mechanisms in mammals. Curr. Opin. Genet. Dev., 1998, 8: 154–164.PubMedCrossRefGoogle Scholar
  72. 72.
    SASAGAWA, I., ICHIYANAGI, O., YAZAWA, H., NAKADA, T., SAITO, H., HIROI, M., YANAGIMACHI, R.: Round spermatid transfer and embryo development. Arch. Androl., 1998, 41: 151–7.PubMedCrossRefGoogle Scholar
  73. 73.
    SASAGAWA, I., KURETAKE, S., EPPIG, J. J., YANAGIMACHI, R.: Mouse primary spermatocytes can complete two meiotic divisions within the oocyte cytoplasm. Biol. Reprod., 1998, 58: 248–54.PubMedCrossRefGoogle Scholar
  74. 74.
    SCHOYSMAN, R., VANDERZWALMEN, P., BERTIN, G., NIJS, M., VAN DAMME, B.: Oocyte insemination with spermatozoa precursors. Curr. Opin. Urol., 1999, 9: 541–5.PubMedCrossRefGoogle Scholar
  75. 75.
    SHAMANSKI, F. L., KIMURA, Y., LAVOIR, M. C., PEDERSEN, R. A., YANAGIMACHI, R.: Status of genomic imprinting in mouse spermatids. Hum. Reprod., 1999, 14: 1050–1056.PubMedCrossRefGoogle Scholar
  76. 76.
    SIMON, I., TENZEN, T., REUBINOFF, B. E., HILLMAN, D., MCCARREY, J. R., CEDAR, H.: Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature, 1999, 401: 929–932.PubMedCrossRefGoogle Scholar
  77. 77.
    SKUSE, D. H., JAMES, R. S., BISHOP, D. V., et al: Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature, 1997, 387: 705–708.PubMedCrossRefGoogle Scholar
  78. 78.
    SPOTILA, L. D., SEREDA, L., PROCKOP, D. J.: Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COL1A2 locus. Am. J. Hum. Genet., 1992, 51: 1396–405.PubMedGoogle Scholar
  79. 79.
    SQUIRE, J., WEKSBERG, R.: Genomic imprinting in tumours. Semin. Cancer Biol., 1996, 7: 41–7.PubMedCrossRefGoogle Scholar
  80. 80.
    STEGER, K.: Transcriptional and translational regulation of gene expression in haploid spermatids. Anat. Embryol., 1999, 199: 471–87.PubMedCrossRefGoogle Scholar
  81. 81.
    SURANI, M. A.: Imprinting and the initiation of gene silencing in the germ line. Cell, 1998, 93: 309–12.PubMedCrossRefGoogle Scholar
  82. 82.
    TADA, M., TADA, T., LEFEBVRE L., BARTON, S. C., SURANI, M. A.: Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. Embo J, 1997, 16: 6510–20.PubMedCrossRefGoogle Scholar
  83. 83.
    TADA, T., OBATA, Y., TADA, M., GOTO, Y., NAKATSUJI, N., TAN, S., KONO, T., TAKAGI, N.: Imprint switching for nonrandom X-chromosome inactivation during mouse oocyte growth. Development, 2000, 127: 3101–5.PubMedGoogle Scholar
  84. 84.
    TANAKA, M., HENNEBOLD, J. D., MACFARLANE, J., ADASHI, E. Y.: A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development, 2001, 128: 655–64.PubMedGoogle Scholar
  85. 85.
    TESARIK, J.: Fertilization of oocytes by injecting spermatozoa, spermatids and spermatocytes. Rev. Reprod., 1996, 1: 149–52.PubMedCrossRefGoogle Scholar
  86. 86.
    TESARIK, J.: Oocyte activation after intracytoplasmic injection of mature and immature sperm cells. Hum. Reprod., 1998, 1: 117–27.Google Scholar
  87. 87.
    TESARIK, J., GRECO, E., COHEN-BACRIE, P., MENDOZA, C.: Germ cell apoptosis in men with complete and incomplete spermiogenesis failure. Mol. Hum. Reprod., 1998, 4: 757–62.PubMedCrossRefGoogle Scholar
  88. 88.
    TESARIK, J., MENDOZA, C.: Spermatid injection into human oocytes. I. Laboratory techniques and special features of zygote development. Hum. Reprod., 1996, 11: 772–9.PubMedGoogle Scholar
  89. 89.
    TESARIK, J., MENDOZA, C., TESTART, J.: Viable embryos from injection of round spermatids into oocytes. N. Engl. J. Med., 1995, 333: 525.PubMedCrossRefGoogle Scholar
  90. 90.
    TESARIK, J., ROLET, F., BRAMI, C., SEDBON, E., THOREL, J., TIBI, C., THEBAULT, A.: Spermatid injection into human oocytes. II. Clinical application in the treatment of infertility due to non-obstructive azoospermia. Hum Reprod, 1996, 11: 780–3.PubMedGoogle Scholar
  91. 91.
    TILGHMAN, S. M.: The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell, 1999, 96: 185–193.PubMedCrossRefGoogle Scholar
  92. 92.
    TUCKER, K. L., BEARD, C., DAUSMAN, J., JACKSON-GRUSBY, L., LAIRD, P. W., LEI, H., LI, E., JAENISCH, R.: Germ line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev., 1996, 10: 1008–1020.PubMedCrossRefGoogle Scholar
  93. 93.
    TYCKO, B., TRASLER, J., BESTOR, T.: Genomic imprinting: gametic mechanisms and somatic consequences. J. Androl., 1997, 18: 480–6.PubMedGoogle Scholar
  94. 94.
    UEDA, T., ABE, K., MIURA, A., et al: The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells, 2000, 5: 649–59.PubMedCrossRefGoogle Scholar
  95. 95.
    VAN LANGENDONCKT, A., DONNAY, L., SCHUURBIERS, N., AUQUIER, P., CAROLAN, C., MASSIP, A., DESSY, F.: Effects of supplementation with fetal calf serum on development of bovine embryos in synthetic oviduct fluid medium. J. Reprod. Fertil., 1997, 109: 87–93.PubMedCrossRefGoogle Scholar
  96. 96.
    VANDERZWALMEN, P., NIJS, M., STECHER, A., ZECH, H., BERTIN, G., LEJEUNE, B., VANDAMME, B., CHATZIPARASIDOU, A., PRAPAS, Y., SCHOYSMAN, R.: Is there a future for spermatid injections?. Hum. Reprod., 1998, 4: 71–84.CrossRefGoogle Scholar
  97. 97.
    VANDERZWALMEN, P., ZECH, H., BIRKENFELD, A., YEMINI, M., BERTIN, G., LEJEUNE, B., NIJS, M., SEGAL, L., STECHER, A., VANDAMME, B., VAN ROOSENDAAL, E., SCHOYSMAN, R.: Intracytoplasmic injection of spermatids retrieved from testicular tissue: influence of testicular pathology, type of selected spermatids and oocyte activation. Hum. Reprod., 1997, 12: 1203–13.PubMedCrossRefGoogle Scholar
  98. 98.
    WIEKOWSKI, M., MIRANDA, M., DEPAMPHILIS, M. L.: Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev. Biol., 1993, 159: 366–78.PubMedCrossRefGoogle Scholar
  99. 99.
    WOLFFE, A. P.: Transcriptional control: imprinting insulation. Curr. Biol., 2000, 10: R463–5.PubMedCrossRefGoogle Scholar
  100. 100.
    YANAGIDA, K., YAZAWA, H., KATAYOSE, H., KIMURA, Y., HAYASHI, S., SATO, A.: Oocyte activation induced by spermatids and the spermatozoa. Int. J. Androl., 2000, 23: 63–5.PubMedCrossRefGoogle Scholar
  101. 101.
    YANG, T., ADAMSON, T. E., RESNICK, J. L., LEFF, S., WEVRICK, R., FRANCKE, U., JENKINS, N. A., COPELAND, N. G., BRANNAN, C. I.: A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat. Genet., 1998, 19: 25–31.PubMedCrossRefGoogle Scholar
  102. 102.
    YAZAWA, H., YANAGIDA, K., KATAYOSE, H., HAYASHI, S., SATO, A.: Comparison of oocyte activation and Ca2+ oscillation-inducing abilities of round/elongated spermatids of mouse, hamster, rat, rabbit and human assessed by mouse oocyte activation assay. Hum. Reprod., 2000, 15: 2582–90.PubMedCrossRefGoogle Scholar
  103. 103.
    YODER, J. A., SOMAN, N. S., VERDINE, G. L., BESTOR, T. H.: DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J. Mol. Biol., 1997, 270: 385–395.PubMedCrossRefGoogle Scholar
  104. 104.
    YOUNG, L. E., FAIRBURN, H. R.: Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology, 2000, 53: 627–48.PubMedCrossRefGoogle Scholar

Copyright information

© Société d’Andrologie de Langue Française 2001

Authors and Affiliations

  • A. Kerjean
    • 1
    • 2
  • M. Jeanpierre
    • 3
  • P. Jouannet
    • 2
  • A. Pàldi
    • 4
  1. 1.INSERM GDPM, Département de Génétique et de Pathologie Moléculaire, Institut Cochin de Génétique Moléculaire (ICGM)Centre Hospitalier Universitaire-CochinParis
  2. 2.Laboratoire de Biologie de la ReproductionUniversité Paris V-Hôpital Cochin-Port-RoyalPavillon Cassini
  3. 3.Laboratoire de Biochimie et Génétique MoléculaireHôpital Cochin-Port-RoyalPavillon Cassini
  4. 4.Institut Jacques MonodParis

Personalised recommendations