Andrologie

, Volume 10, Issue 4, pp 417–426 | Cite as

L’irradiation des spermatozoïdes au Laser HeNe à faible énergie chez la souris et chez l’homme

Spermiologie

Résumé

L’irradiation de lignées somatiques diverses, de spermatozoïdes et des cellules embryonnaires au laser HeNe de faible énergie (LFE) agirait sur des aspects divers de leur métabolisme cellulaire. Cette action porterait notamment sur l’activité proliferative et respiratoire, ainsi que la synthèse de l’ATP ou l’afflux intracellulaire de Ca2+. Le but de ce travail est d’examiner les effets de l’irradiation au LFE: 1) sur le pouvoir fécondant in vitro des spermatozoïdes de souris en fécondation in vitro (FIV) et 2) sur le pouvoir fusiogénique des spermatozoïdes humains dans l’épreuve du hamster (Sperm-zona free hamster egg penetration assay, SPA). Dans le système de FIV, des ovocytes de souris ont été incubés pendant 24 heures avec des spermatozoïdes épididymaires homologues irradiés ou non. L’irradiation a accru le pourcentage des œufs fécondésin vitro ainsi que le taux du Ca2+ intracellulaire impliquant ainsi l’activation du transport mitochondrial du Ca2+ et la génération de molécules d’H2O2. Dans l’épreuve de fusiogénicité, des ovocytes dépellucidés de hamster ont été incubés pendant trois heures avec des spermatozoïdes irradiés ou non de 43 hommes investigués pour infécondité. Dans 16 cas de faible fusiogénicité sans irradiation, l’irradiation a augmenté le pourcentage de fusion des spermatozoïdes avec les ovocytes de hamster. Dans 27 cas de fusiogénicité normale, l’irradiation n’a eu aucun effet significatif. Ainsi, si cette irradiation est bénéfique chez la souris en FIV, cet effet bénéfique ne se manifeste chez l’homme en SPA que sur les spermatozoïdes déficients.

Mots Clés

Spermatozoïdes humains/de souris Laser He−Ne FIV murine Ca2+ intracellulaire Epreuve du Hamster 

Low energy He−Ne 630 laser (LEL) irradiation on mouse and human spermatozoa

Abstract

Introduction

The effects of low energy He−Ne 630 laser (LEL) irradiation on various aspects of cell metabolism, including proliferation, respiration, ATP synthesis and Ca2+ uptake, have been recently recognized in somatic cells, animal spermatozoa and embryonic cells.

Objectives

1- To analyze thein vitro effects of LEL irradiation on the mouse IVF model. 2- To assess the effects of experimental LEL irradiation on human spermatozoa in the sperm-zona free hamster egg penetration (SPA) model.

Material & Methods

1- In a mouse IVF model, pooled oocytes were incubated for 24 h. with LEL-irradiated and non-irradiated epididymal mouse spermatozoa. The percentage of fertilized eggs, intracellular Ca2+ and Ca2+ uptake as well as the effects of reactive oxygen scavengers were compared in the two groups. 2- In the enhanced SPA model, with overnight TEST-Yolk preincubation, LEL-irradiated and non-irradiated ejaculated spermatozoa from 43 infertile men were incubated for 3 h with fresh zona-free hamster eggs. The percentage of eggs penetrated (SPA%) by irradiated or control sperm was compared. Acrosome reaction (AR) and Hemizona Assay (HZA) were also performed on the same ejaculates.

Results

1- In mice, brief LEL irradiation enhanced intracellular Ca2+ influx and increased thein vitro fertilization capacity of spermatozoa. Mitochondrial Ca2+ transport mechanisms and H2O2 appeared to be involved in these LEL effects. 2- In the 43 male patients, AR and SPA were correlated, while SPA and HZA were poorly correlated. In the whole group, the mean SPA% of LEL-irradiated and control sperm were not significantly different: 49.8±39.9 and 51.0±34.9, respectively. No significant change was observed in 50% of cases. Following irradiation, SPA% increased in 25% of cases and decreased in 25% of cases. However, classifying all cases according to the SPA cut-off point of 30% as poor and good sperm in this enhanced SPA model, showed that LEL irradiation significantly increased SPA% only in the poor sperm subgroup (n=16) from 5.5.±8.9 to 23.1±25.2 (p<0.0001). This increase was observed in 50% of these patients. In the good sperm category (n=27), no improvement of SPA% was observed. On the contrary, LEL irradiation decreased SPA% from 76.1±24.4 to 67.6±28.

Conclusion

In a mouse IVF model, LEL irradiation of spermatozoa improved intracellular Ca2+influx and egg fertilization. H2O2 seems to participate in the biochemical cascade transforming light signals into a biological response. In man, using the SPA model, LEL sperm irradiation might improve the penetration capacity only in the case of poor quality sperm, by increasing sperm egg penetration in one half of cases, otherwise LEL is ineffective. Further studies are required to confirm these results, but LEL should not be considered for clinical use until its safety has been proven. (Supported by grants from the Chief Scientist Office, Ministry of Health)

Key words

Spermatozoa Laser He−Ne murine IVF intracellular Ca2+ Hamster test 

Références

  1. 1.
    ALVAREZ J.G., STOREY B.T.: Role of glutathion peroxydase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxydation. Gamete Res., 1989, 23: 77–90.PubMedCrossRefGoogle Scholar
  2. 2.
    AITKEN R.J., CLARKSON J., FISHEL S.: Generation of reactive species, lipid peroxydation and human sperm function. Biol. Reprod., 1989, 40: 183–197.CrossRefGoogle Scholar
  3. 3.
    AITKEN R.J., BUCKINGHAM D.W., FANG H.G.: Analysis of the responses of human spermatozoa to A23187 employing a novel technique for assessing the acrosome reaction. J. Androl. 1993, 14: 132–141.PubMedGoogle Scholar
  4. 4.
    AITKEN R.J.: Mechanisms and prevention of lipid peroxydation in human spermatozoa. Human sperm acrosome reaction. In: Colloque de l’INSERM. 1995, 236: 339–353.Google Scholar
  5. 5.
    AITKEN R.J., GORDON E., HARKISS D.et al.: Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol. Reprod., 1998, 59: 1037–1046.PubMedCrossRefGoogle Scholar
  6. 6.
    BIELANSKY A., HARE W.C.D.: Development in vitro of bovine embryos after exposure to continuous helium-neon laser light. Theriogenology, 1992, 37:192.CrossRefGoogle Scholar
  7. 7.
    BOLOGNANI L., COSTATO M., DELMONTE L.et al.: Effect of laser on enzymatic systems: inactivation of muscle lactate dehydrogenate by CO2 and its reactivation by laser irradiation. Lasers Technol. 1991, 1: 103–107.Google Scholar
  8. 8.
    BREITBART H., WEHBIE R.S., LARDY H.A.: Regulation of calcium transport in bovine spermatozoa. Biochem. Biophys. Acta, 1990, 1027: 72–78.PubMedCrossRefGoogle Scholar
  9. 9.
    BREITBART H., LEVINSHAL T., COHEN N.et al.: Changes in calcium transport in mammalian sperm mitochondria and plasma membrane irradiated at 633 nm (HeNe laser). J Photochem. Photobiol. B. Biol., 1996; 34: 117–121.CrossRefGoogle Scholar
  10. 10.
    BREITBART H., RUBINSTEIN S., GRUBERGER M.: Calcium efflux mechanism in sperm mitochondria. Biochem. Biophys. Acta, 1996, 1312: 79–84.PubMedCrossRefGoogle Scholar
  11. 11.
    BURRUEL V.R., RAABE O.G., WILEY L.M.: In vitro fertilization rate of mouse oocytes with spermatozoa from the F1 offspring of males irradiated with 1.0 Gy 137Cs gamma-rays. Mutat. Res., 1997, 381: 59–66.PubMedGoogle Scholar
  12. 12.
    CLEARY S.F., LIU L.M., GRAHAM R.et al.: In vitro fertilization of mouse ova by spermatozoa exposed isothermally to radio-frequency radiation. Bioelectromagnetics, 1989, 10: 361–369.PubMedCrossRefGoogle Scholar
  13. 13.
    COHEN N., LUBART R., RUBINSTEIN Set al.: Light irradiation of mouse spermatozoa: Stimulation of in-vitro Fertilization and calcium signals. Photochem. Photobiol., 1998, 68: 407–413.PubMedCrossRefGoogle Scholar
  14. 14.
    DE LAMIRANDE E., JIANG H., ZINI H.A.et al.: Reactive oxygen species and sperm physiology. Rev. Reprod., 1997, 2: 48–54.PubMedCrossRefGoogle Scholar
  15. 15.
    FLORMAN H.M., CARRON M.E., KIM T.D.H.et al.: Activation of voltage dependent calcium channels of mammalian sperm is required for zona pellucida induced acrosomal exocytosis. Dev. Biol., 1992, 152: 304–314.PubMedCrossRefGoogle Scholar
  16. 16.
    FLORMAN H.M.: Sequential focal and global elevations of sperm intracellular Ca2+ are initiated by the zona pellucida during acrosomal exocytosis. Dev. Biol., 1994, 165: 152–164.PubMedCrossRefGoogle Scholar
  17. 17.
    GRECO M., GUIDA G., PERLINO E.et al.: Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biophys. Biochem. Res. Commun., 1989, 29: 1428–1434CrossRefGoogle Scholar
  18. 18.
    HINTING A., VERMEULEN L., COMHAIRE F.: The indirect mixed antiglobulin reaction test using a commercially available kit for the detection of antisperm antibodies in serum. Fertil. Steril. 1988, 49: 1039–1044.PubMedGoogle Scholar
  19. 19.
    KARU T.: Molecular mechanisms of therapeutic effect of low intensity laser irradiation. Lasers Life Sci., 1988, 2: 53–74.Google Scholar
  20. 20.
    KRUGER T.F., MENKVELD R., STANDER F.S.et al.: Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil. Steril., 1986, 46: 1118–1123.PubMedGoogle Scholar
  21. 21.
    LANZENDORF S.E., HOLMGREN W.J., JEYENDRAN R.S.: The effect of egg yolk medium on human sperm binding in the hemizona assay. Fertil. Steril., 1992, 58: 547–550.PubMedGoogle Scholar
  22. 22.
    LUBART R., FRIEDMANN H., LEVINSHAL R.et al.: Effect of light on calcium transport in bull sperm cells. J. Photochem. Photobiol. B. Biol., 1992; 15: 337–341CrossRefGoogle Scholar
  23. 23.
    MATSUDA Y, YAMADA T, TOBARI I.: Studies on chromosome aberrations in the eggs of mice fertilized in vitro after irradiation. I. Chromosome aberrations induced in sperm after X-irradiation. Mutat. Res; 1985, 148: 113–117.PubMedGoogle Scholar
  24. 24.
    MENDOZA C., CARRERAS A., MOOS J.,et al.: Distinction between true acrosome reaction and degenerative acrosome loss by a one step staining method using Pisum sativum agglutinin. J. Reprod. Fertil., 1992, 95: 755–763.PubMedCrossRefGoogle Scholar
  25. 25.
    MORENO R.D., BARROS C.: Effect of Test-yolk upon human sperm acrosome reaction. Microsc. Electron. Biol. Cellular., 1991, 15: 107–117.Google Scholar
  26. 26.
    OCANA-QUERO J.M., GOMEZ-VILLAMANDOS R., MORENO-MILLAN M.,et al.: The effects of He−Ne laser irradiation on in vitro maturation and fertilization of immature bovine oocytes. Lasers Med. Sci., 1995; 10: 113–119CrossRefGoogle Scholar
  27. 27.
    OCANA-QUERO J.M., GOMEZ-VILLAMANDOS R., MORENO-MILLAN M.,et al.: Biological effects of helium-neon (He−Ne) laser irradiation on acrosome reaction in bull sperm cells. J. Photochem. Photobiol., B 1997, 40: 294–298.CrossRefGoogle Scholar
  28. 28.
    PLACHOT M., MANDELBAUM J., JUNCA A.M.: Acrosome reaction of human sperm used for in vitro fertilization. Fertil. Steril., 1984, 42: 418–423.PubMedGoogle Scholar
  29. 29.
    RICEVUTI G., MAZZONE A., MONAIA C.et al.: In vivo and in vitro HeNe laser effects on phagocyte functions. Inflammation, 1989, 13: 507–527.PubMedCrossRefGoogle Scholar
  30. 30.
    SALET C., PASSARELLA S., QUAGLIARIELLO E.: Effects of selective irradiation on mammalian mitochondria. Photochem. Photobiol., 1987, 45: 433–438PubMedCrossRefGoogle Scholar
  31. 31.
    SIEGELBAUM S.A.: Ion channel control by thyrosine phosphorylation. Current Biol. 1994, 4: 242–245.CrossRefGoogle Scholar
  32. 32.
    SOFFER Y., GOLAN A., HERMAN A.et al.: Prediction of in vitro fertilization (IVF) outcome by the sperm penetration assay (SPA) with TEST Yolk buffer preincubation. Fertil. Steril., 1992, 58: 556–562.PubMedGoogle Scholar
  33. 33.
    SOFFER Y., RAZIEL A., FRIEDLER S.et al.: Place des tests d’interaction sperme-mucus DANS LE BILAN MASCULIN DE L’INFECONDITE. ANDROLOGIE, 1998, 8: 36–46.Google Scholar
  34. 34.
    SPIELBERG H., JUNE C.H., BLAIR O.C.et al.: UV irradiation of lymphocytes triggers an increase in intracellular Ca2+ and prevents lectin-stimulated Ca2+ mobilization: evidence for UV and nifedipinesensitive Ca2+ channels. Exp. Hematol., 1991, 19: 742–748.PubMedGoogle Scholar
  35. 35.
    TAMURA M.: Non-invasive monitoring of the redox state of cytochrome oxydase in living tissue using near infrared laser lights. Jpn. Circ., J. 1993, 57: 817–824.Google Scholar
  36. 36.
    TESARIK J., CERRERAS A., MENDOZA C.: Single cell analysis of tyrosine kinase dependent independent Ca2+ fluxes in progesterone induces acrosome reaction. Mol. Human Reprod., 1996, 2: 225–232.CrossRefGoogle Scholar
  37. 37.
    WILSON G.F., KACZMAREK L.K.: Mode-switching of a voltage-gated cation channel is mediated by a protein kinase A-regulated tyrosine phosphatase. Nature, 1993, 366: 433–438PubMedCrossRefGoogle Scholar
  38. 38.
    YANAGIMASHI R.: Mammalian fertilization. In: Knobil E., Neil J.D. eds. The Physiology of Reproduction. New-York, Raven Press, 1994: 189–317.Google Scholar
  39. 39.
    YANG Y.S., ROJAS F.J., STONE S.C.: Acrosome reaction of human spermatozoa in zona-free hamster egg penetration test. Fertil. Steril., 1988, 50: 954–959.PubMedGoogle Scholar
  40. 40.
    YOGEV L., HOMONNAI Z.T., GAMZU R.et al.: The use of hemizona assay in the evaluation of the optimal sperm preparation technique. Hum. Reprod., 1995, 10: 851–854.PubMedGoogle Scholar
  41. 41.
    YOUNG S.R., DYSON M., BOLTON P.: Effect of light on Calcium uptake by macrophages. Laser Ther., 1990, 2: 53–57.Google Scholar
  42. 42.
    ZARCA A., RUBINSTEIN S., BREITBART H.: Transport mechanism for calcium and phosphate in ram spermatozoa. Biochem. Biophys. Acta, 1988; 944: 351–8.PubMedCrossRefGoogle Scholar

Copyright information

© Société d’Andrologie de Langue Française 2000

Authors and Affiliations

  1. 1.Faculté de médecine SacklerUniversité de Tel AvivRamat GanIsraël
  2. 2.Faculté des sciences physiquesUniversité Bar IlanRamat GanIsraël
  3. 3.Faculté des sciences de la vieUniversité Bar IlanRamat GanIsraël
  4. 4.Centre d’infertilité masculineCentre médical Assaf HaroféZerifinIsrael

Personalised recommendations