Skip to main content
Log in

The role of monocytes and perivascular macrophages in HIV and SIV neuropathogenesis: Information from non-human primate models

  • Part II Experimental Models of Had
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Perivascular macrophages are located in the perivascular space of cerebral microvessels and thus uniquely situated at the intersection between the brain parenchyma and blood. Connections between the nervous and immune systems are mediated in part through these cells that are ideally located to sense perturbations in the periphery and turnover by cells entering the central nervous system (CNS) from the circulation. It has become clear that unique subsets of brain macrophages exist in normal and SIV- or HIV-infected brains, and perivascular macrophages and similar cells in the meninges and choroid plexus play a central role in lentiviral neuropathogenesis. Common to all these cell populations is their likely replacement within the CNS by monocytes. Studies of SIV-infected non-human primates and HIV-infected humans underscore the importance of virus-infected and activated monocytes, which traffic to the CNS from blood to become perivascular macrophages, potentially drive blood-brain barrier damage and cause neuronal injury. This review summarizes what we know about SIV- and HIV-induced neuropathogenesis focusing on brain perivascular macrophages and their precursors in blood that may mediate HIV infection and injury in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre K and S Miller (2002) MHC class II-positive perivascular microglial cells mediate resistance toCryptococcus neoformans brain infection.Glia 39, 184–188.

    Article  PubMed  Google Scholar 

  • Amirayan-Chevillard N, H Tissot-Dupont, C Capo, C Brunet and F Dignat-George (2000) Impact of highly active anti-retroviral therapy (HARRT) on cytokine production and monocyte subsets in HIV-infected patients.Clin. Exp. Immunol. 120, 107–112.

    Article  PubMed  CAS  Google Scholar 

  • Ancuta P, R Rao, A Moses, A Mehle, SK Shaw, FW Luscinskas and D Gabuzda (2003) Fractalkine preferentially mediates arrest and migration of CD16+ monocytes.J. Exp. Med. 197, 1701–1707.

    Article  PubMed  CAS  Google Scholar 

  • Ancuta P, A Moses and D Gabuzda (2004) Transendothelial migration of CD16+ monocytes in response to fractalkine under constitutive and inflammatory conditions.Immunobiology 209, 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Avison MJ, A Nath, R Greene-Avison, FA Schmitt, RA Bales, A Ethisham, RN Greenberg and JR Berger (2004a) Inflammatory changes and breakdown of microvascular integrity in early human immunodeficiency virus dementia.J. Neurovirol. 10, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Avison MJ, A Nath, R Greene-Avison, FA Schmitt, RN Greenberg and JR Berger (2004b) Neuroimaging correlates of HIV-associated BBB compromise.J. Neuroimmunol. 157, 140–146.

    Article  PubMed  CAS  Google Scholar 

  • Barrow AD, SC Burgess, K Howes and VK Nair (2003) Monocytosis is associated with the onset of leukocyte and viral infiltration of the brain in chickens infected with the very virulent Marek’s disease virus strain C12/130.Avian Pathol. 32, 183–191.

    Article  PubMed  Google Scholar 

  • Becher B and J Antel (1996) Comparison of phenotypic and functional properties of immediatelyex vivo and cultured human adult microglia.Glia 18, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Boche D, F Gray, L Chakrabarti, M Hurtrel, L Montagnier and B Hurtrel (1995) Low susceptibility of resident microglia to simian immunodeficiency virus replication during the early stages of infection.Neuropathol. Appl. Neurobiol. 21, 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Boven LA, J Middel, J Verhoef, CJA De Groot and HSLM Nottet (2000) Monocyte infiltration is highly associated with loss of the tight junction protein zonula occludens in HIV-1-associated dementia.Neuropathol. Appl. Neurobiol. 26, 356–360.

    Article  PubMed  CAS  Google Scholar 

  • Buch S, Y Sui, R Potula, D Pinson, I Adany, Z Li, M Huang, S Li, N Dhillon, E Major and O Narayan (2004) Role of interleukin-4 and monocyte chemoattractant protein-1 in the neuropathogenesis of X4 simian human immunodeficiency virus infection in macaques.J. Neurovirol. 10 Suppl.1, 118–124.

    Google Scholar 

  • Budka H (1986) Multinucleated giant cells in brain: a hallmark of the acquired immune deficiency syndrome (AIDS).Acta Neuropathol. 69, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky MI, H Nottet, H Schmidtmayerova, L Dubrovsky, CR Flanagan, ME Mullins, SA Lipton and HE Gendelman (1995) Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease.J. Exp. Med. 181, 735–745.

    Article  PubMed  CAS  Google Scholar 

  • Burudi EME, MCG Marcondes, DD Watry, M Zandonatti, MA Taffe and HS Fox (2002) Regulation of indoleamine 2,3-dioxygenase expression in simian immunodeficiency virusinfected monkey brains.J. Virol. 76, 12233–12241.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti L, M Hurtrel, MA Maire, R Vazeux, D Dormont, L Montagnier and B Hurtrel (1991) Early viral replication in the brain of SIV-infected rhesus monkeys.Am. J. Pathol. 139, 1273–1280.

    PubMed  CAS  Google Scholar 

  • Dallasta LM, LA Pisarov, JE Esplen, JV Werley, AV Moses, JA Nelson and CL Achim (1999) Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis.Am. J. Pathol. 155, 1915–1927.

    PubMed  CAS  Google Scholar 

  • Davis LE, BL Hjelle, VE Miller, DL Palmer, AL Llewellyn, TL Merlin, SA Young, RG Mills, W Wachsman and CA Wiley (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection.Neurology 42, 1736–1739.

    PubMed  CAS  Google Scholar 

  • Depboylu C, TA Reinhart, O Takikawa, Y Imai, H Maeda, H Mitsuya, D Rausch, LE Eiden and E Weihe (2004) Brain virus burden and indoleamine-2,3-dioxygenase expression during lentiviral infection of rhesus monkey are concomitantly lowered by 6-chloro-2’,3’-dideoxyguanosine.Eur. J. Neurosci. 19, 2997–3005.

    Article  PubMed  Google Scholar 

  • Desrosiers RC, A Hansen-Moosa, K Mori, DP Bouvier, NW King, MD Daniel and DJ Ringler (1991) Macrophage-tropic variants of SIV are associated with specific AIDS-related lesions but are not essential for the development of AIDS.Am. J. Pathol. 139, 29–35.

    PubMed  CAS  Google Scholar 

  • Dick AD, M Pell, BJ Brew, E Foulcher and JD Sedgwick (1997) Directex vivo flow cytometric analysis of human microglial cell CD4 expression: examination of central nervous system biopsy specimens from HIV-seropositive patients and patients with other neurological disease.AIDS 11, 1699–1708.

    Article  PubMed  CAS  Google Scholar 

  • Dunne J, C Feighery and A Whelan (1996) Beta-2-microglobulin, neopterin and monocyte Fc gamma receptors in opportunistic infections of HIV-positive patients.Br. J. Biomed. Sci. 53, 263–269.

    PubMed  CAS  Google Scholar 

  • Durrbaum-Landmann I, E Kaltenhauser, HD Flad and M Ernst (1994) HIV-1 envelope protein gp120 affects phenotype and function of monocytesin vitro. J. Leukoc. Biol.55, 545–551.

    PubMed  CAS  Google Scholar 

  • Ellery P, S Sonza, J Mills and S Crowe (2003) Monocyte subsets and HIV reservoirs in patients on HAART.10th Conference on Retroviruses and Opportunistic Infections Abstr.468.

  • Elmquist JK, CD Breder, JE Sherin, TE Scammell, WF Hickey, D Dewitt and CB Saper (1997) Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages.J. Comp. Neurol. 381, 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM and D Gay (1990) Immunological and neuropathological significance of the Virchow-Robin space.J. Neurol. Sci. 100, 3–8.

    Article  PubMed  CAS  Google Scholar 

  • Evers S, D Nabavi, A Rahmann, C Heese, D Reichelt and IW Husstedt (2003) Ischaemic cerebrovascular events in HIV infection: a cohort study.Cerebrovasc. Dis. 15, 199–205.

    Article  PubMed  Google Scholar 

  • Fabriek BO, ES Van Haastert, I Galea, MM Polfliet, ED Dopp, MM Van Den Heuvel, TK Van Den Berg, CJ De Groot, P Van Der Valk and CD Dijkstra (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation.Glia [Apr. 21, Epub ahead of print].

  • Fiala M, QN Liu, J Sayre, V Pop, V Brahmandam, MC Graves and HV Vinters (2002) Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the bloodbrain barrier.Eur. J. Clin. Invest. 32, 360–371.

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Smith T, S Croul, AE Sverstiuk, C Capini, D L’Heureux, EG Regulier, MW Richardson, S Amini, S Morgello, K Khalili and J Rappaport (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection.J. Neurovirol. 7, 528–541.

    Article  PubMed  CAS  Google Scholar 

  • Ford AL, AL Goodsall, WF Hickey and JD Sedgwick (1995) Normal adult rat microglia seperated from other CNS macrophages by flow cytomteric sorting. Phenotypic differences defined and directex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared.J. Immunol. 154, 4309–4321.

    PubMed  CAS  Google Scholar 

  • Gabuzda DH, DD Ho, S de la Monte, MS Hirsch, TR Rota and RA Sobel (1986) Immunohistochemical identification of HTLVIII antigen in brains of patients with AIDS.Ann. Neurol. 20, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Galimi F, RG Summers, H van Praag, IM Verma and FH Gage (2005) A role for bone marrow-derived cells in the vasculature of noninjured CNS.Blood 105, 2400–2402.

    Article  PubMed  CAS  Google Scholar 

  • Geissmann F, S Jung and DR Littman (2003) Blood monocytes consist of two principal subsets with distinct migratory properties.Immunity 19, 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, O Narayan, S Kennedy-Stoskopf, PG Kennedy, Z Ghotbi, JE Clements, J Stanley and G Pezeshkpour (1986) Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages.J. Virol. 58, 67–74.

    PubMed  CAS  Google Scholar 

  • Ghorpade A, R Persidskaia, R Suryadevara, M Che, XJ Liu, Y Persidsky and HE Gendelman (2001) Mononuclear phagocyte differentiation, activation, and viral infection regulate matrix metalloproteinase expression: implications for human immunodeficiency virus type 1-associated dementia.J. Virol. 75, 6572–6583.

    Article  PubMed  CAS  Google Scholar 

  • Gray F, MC Lescs, C Keohane, F Paraire, B Marc, M Durigon and R Gherardi (1992) Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases.J. Neuropathol. Exp. Neurol. 51, 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Green DA, E Masliah, HV Vinters, P Beizai, DJ Moore and CL Achim (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients.AIDS 19, 407–411.

    Article  PubMed  CAS  Google Scholar 

  • Hess DC, T Abe, WD Hill, AM Studdard, J Carothers, M Masuya, PA Fleming, CJ Drake and M Ogawa (2004) Hematopoietic origin of microglial and perivascular cells in brain.Exp. Neurol. 186, 134–144.

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF and H Kimura (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigenin vivo. Science239, 290–292.

    Article  PubMed  CAS  Google Scholar 

  • Ho DD, TR Rota and MS Hirsch (1986) Infection of monocyte/ macrophages by human T lymphotropic virus type III.J. Clin. Invest. 77, 1712–1715.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann N, N Lachnit, M Streppel, B Witter, W Neiss, O Guntinas-Lichius and D Angelov (2002) Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1alpha by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats.BMC Immunology 3, 11.

    Article  PubMed  Google Scholar 

  • Hughes ES, JE Bell and P Simmonds (1997) Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes.J. Virol. 71, 1272–1280.

    PubMed  CAS  Google Scholar 

  • Hurtrel B, L Chakrabarti, M Hurtrel and L Montagnier (1993) Target cells during early SIV encephalopathy.Res. Virol. 144, 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz AA, JW Berman and WD Lyman (1994) The role of the blood-brain barrier in HIV infection of the central nervous system.Adv. Neuroimmunol. 4, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Hutchings M and RO Weller (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man.J. Neurosurg. 65, 316–325.

    PubMed  CAS  Google Scholar 

  • Ichimura T, PA Fraser and H Cserr (1991) Distribution of extracellular tracers in the perivascular spaces of the rat brain.Brain Res. 545, 103–113.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti P, M Ottmann, P Morand, P Leclercq and JM Seigneurin (1992) HIV-1 in blood monocytes: frequency of detection of proviral DNA using PCR and comparison with the total CD4 count.AIDS Res. Hum. Retroviruses 8, 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Izycka-Swieszewska E, A Zoltowska, R Rzepko, M Gross and J Borowska-Lehman (2000) Vasculopathy and amyloid beta reactivity in brains of patients with acquired immune deficiency (AIDS).Folia Neuropathol. 38, 175–182.

    PubMed  CAS  Google Scholar 

  • Jones M, K Olafson, MR Del Bigio, J Peeling and A Nath (1998) Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement.J. Neuropathol. Exp. Neurol. 57, 563–570.

    Article  PubMed  CAS  Google Scholar 

  • Jones MV, JE Bell and A Nath (2000) Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia.AIDS 14, 2709–2713.

    Article  PubMed  CAS  Google Scholar 

  • Kalebic T, L Masiero, M Onisto and S Garbisa (1994) HIV-1 modulates the expression of gelatinase A and B in monocytic cells.Biochem. Biophys. Res. Commun. 205, 1243–1249.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy DW and JL Abkowitz (1997) Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model.Blood 90, 986–993.

    PubMed  CAS  Google Scholar 

  • Kim WK, S Corey, X Alvarez and K Williams (2003a) Monocyte/ macrophage traffic in HIV and SIV encephalitis.J. Leukoc. Biol. 74, 650–656.

    Article  PubMed  CAS  Google Scholar 

  • Kim WK, E Ratai, MR Lentz, JB Greco, RF Schinazi, P Autissier, RA Fuller, JP Kim, J He, SV Westmoreland, M Piatak, JD Lifson, RG Gonzalez and KC Williams (2003b) Monocyte activation and infection with SIV neuropathogenesis.J. Neurovirol. 9 Suppl. 3, 119.

    Google Scholar 

  • Kim WK, X Alvarez and K Williams (2005) CD163: marker for perivascular macrophages and virus infected cells in human and monkey encephalitic brains.Keystone Symposia (Central Nervous System Inflammation: Mechanisms, Consequences and Therapeutic Strategies), Abstr.132.

  • Kodama T, K Mori, T Kawahara, DJ Ringler and RC Desrosiers (1993) Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with AIDS.J. Virol. 67, 6522–6534.

    PubMed  CAS  Google Scholar 

  • Kusdra L, D McGuire and L Pulliam (2002) Changes in monocyte/ macrophage neurotoxicity in the era of HAART: implications for HIV-associated dementia.AIDS 16, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Lackner AA, MO Smith, RJ Munn, DJ Martfeld, MB Gardner, PA Marx and S Dandekar (1991) Localization of simian immunodeficiency virus in the central nervous system of rhesus monkeys.Am. J. Pathol. 139, 609–621.

    PubMed  CAS  Google Scholar 

  • Laman JD, M van Meurs, MM Schellekens, M de Boer, B Melchers, L Massacesi, H Lassmann, E Claassen and BA ‘t Hart (1998) Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus).J. Neuroimmunol. 86, 30–45.

    Article  PubMed  CAS  Google Scholar 

  • Lane JH, VG Sasseville, MO Smith, P Vogel, DR Pauley, MP Heyes and AA Lackner (1996) Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation.J. Neurovirol. 2, 423–432.

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, M Schmied, K Vass and WF Hickey (1993) Bone marrow derived elements and resident microglia in brain inflammation.Glia 7, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Li Q, LE Eiden, W Cavert, TA Reinhart, DM Rausch, EA Murray, E Weihe and AT Haase (1999) Increased expression of nitric oxide synthase and dendritic injury in simian immunodeficiency virus encephalitis.J. Hum. Virol. 2, 139–145.

    PubMed  CAS  Google Scholar 

  • Liu Y, XP Tang, JC McArthur, J Scott and S Gartner (2000) Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain.J. Neurovirol. 6 Suppl. 1, S70-S81.

    PubMed  CAS  Google Scholar 

  • Locher C, G Vanham, L Kestens, M Kruger, JL Ceuppens, J Vingerhoets and P Gigase (1994) Expression patterns of Fc gamma receptors, HLA-DR and selected adhesion molecules on monocytes from normal and HIV-infected individuals.Clin. Exp. Immunol. 98, 115–122.

    PubMed  CAS  Google Scholar 

  • Luabeya M-K, LM Dallasta, CL Achim, CD Pauza and RL Hamilton (2000) Blood-brain barrier disruption in simian immunodeficiency virus encephalitis.Neuropathol. Appl. Neurobiol. 26, 454–462.

    Article  PubMed  CAS  Google Scholar 

  • MacLean AG, TA Rasmussen, D Bieniemy and AA Lackner (2004a) Activation of the blood-brain barrier by SIV (simian immunodeficiency virus) requires cell-associated virus and is not restricted to endothelial cell activation.Biochem. Soc. Trans. 32, 750–752.

    Article  CAS  Google Scholar 

  • MacLean AG, TA Rasmussen, DN Bieniemy, X Alvarez and AA Lackner (2004b) SIV-induced activation of the blood-brain barrier requires cell-associated virus and is not restricted to endothelial cell activation.J. Med. Primatol. 33, 236–242.

    Article  Google Scholar 

  • Mankowski JL, SE Queen, LM Kirstein, JP Spelman, J Laterra, IA Simpson, RJ Adams, JE Clements and MC Zink (1999) Alterations in blood-brain barrier glucose transport in SIVinfected macaques.J. Neurovirol. 5, 695–702.

    Article  PubMed  CAS  Google Scholar 

  • McElrath MJ, RM Steinman and ZA Cohn (1991) Latent HIV-1 infection in enriched populations of blood monocytes and T cells from seropositive patients.J. Clin. Invest. 87, 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Mesquita R, E Castanos-Velez, P Biberfeld, RM Troian and MM de Siqueira (1998) Measles virus antigen in macrophage/microglial cells and astrocytes of subacute sclerosing panencephalitis.APMIS 106, 553–561.

    PubMed  CAS  Google Scholar 

  • Mizusawa H, A Hirano, JF Llena and M Shintaku (1988) Cerebrovascular lesions in acquired immune deficiency syndrome (AIDS).Acta Neuropathol. (Berl.) 76, 451–457.

    Article  CAS  Google Scholar 

  • Mordelet E, K Kissa, A Cressant, F Gray, S Ozden, C Vidal, P Charneau and S Granon (2004) Histopathological and cognitive defects induced by Nef in the brain.FASEB J. 18, 1851–1861.

    Article  PubMed  CAS  Google Scholar 

  • Nockher WA, L Bergmann and JE Scherberich (1994) Increased soluble CD14 serum levels and altered CD14 expression of peripheral blood monocytes in HIV-infected patients.Clin. Exp. Immunol. 98, 369–374.

    PubMed  CAS  Google Scholar 

  • Peluso R, A Haase, L Stowring, M Edwards and P Ventura (1985) A Trojan Horse mechanism for the spread of visna virus in monocytes.Virology 147, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Persidsky Y, J Zheng, D Miller and HE Gendelman (2000) Mononuclear phagocytes mediate blood-brain barrier compromise and neuronal injury during HIV-1-associated dementia.J. Leukoc. Biol. 68, 413–422.

    PubMed  CAS  Google Scholar 

  • Petito CK and KS Cash (1992) Blood-brain barrier abnormalities in the acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins inpostmortem brain.Ann. Neurol. 32, 658–666.

    Article  PubMed  CAS  Google Scholar 

  • Polfliet MM, PJ Zwijnenburg, AM van Furth, T van der Poll, EA Dopp, C Renardel de Lavalette, EM van Kesteren-Hendrikx, N van Rooijen, CD Dijkstra and TK van den Berg (2001) Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis.J. Immunol. 167, 4644–4650.

    PubMed  CAS  Google Scholar 

  • Polfliet MM, F van de Veerdonk, EA Dopp, EM van Kesteren-Hendrikx, N van Rooijen, CD Dijkstra and TK van den Berg (2002) The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis.J. Neuroimmunol. 122, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Power C, P-A Kong, TO Crawford, S Wesselingh, JD Glass, JC McArthur and BD Trapp (1993) Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood brain-barrier.Ann. Neurol. 34, 339–350.

    Article  PubMed  CAS  Google Scholar 

  • Pu H, J Tian, G Flora, Y Woo Lee, A Nath, B Hennig and M Toborek (2003) HIV-1 tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain.Mol. Cell. Neurosci. 24, 224–237.

    Article  PubMed  CAS  Google Scholar 

  • Pulliam L, R Gascon, M Stubblebine, D McGuire andMS McGrath (1997) Unique monocyte subset in patients with AIDS dementia.Lancet 349, 692–695.

    Article  PubMed  CAS  Google Scholar 

  • Pumarola-Sune T, BA Navia, C Cordon-Cardo, ES Cho and RW Price (1987) HIV antigen in the brains of patients with the AIDS dementia complex.Ann. Neurol. 21, 490–496.

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, P Kivisakk and G Kidd (2003) Three or more routes for leukocyte migration into the central nervous system.Nat. Rev. Immunol. 3, 569–581.

    Article  PubMed  CAS  Google Scholar 

  • Reuter JD, DL Gomez, JH Wilson and AN van den Pol (2004) Systemic immune deficiency necessary for cytomegalovirus invasion of the mature brain.J. Virol. 78, 1473–1487.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes RH (1991) Evidence of serum-protein leakage across the blood brain barrier in the acquired immunodeficiency syndrome.J. Neuropath. Exp. Neurol. 50, 171–183.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA, N Sullivan and MM Esiri (2001) White matter damage is associated with matrix metalloproteinases in vascular dementia.Stroke 32, 1162–1168.

    PubMed  CAS  Google Scholar 

  • Rostasy K, L Monti, C Yiannoutsos, M Kneissl, J Bell, TL Kemper, JC Hedreen and BA Navia (1999) Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex.Ann. Neurol. 46, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Salemi M, S Lamers, S Yu, T de Oliveira, W Fitch and M McGrath (2005a) Phylodynamic Analysis of HIV-1 in the Brain. 12th Conference on Retroviruses and Opportunistic Infections Abstr.375.

  • Salemi M, SL Lamers, S Yu, T de Oliveira, WM Fitchand MS McGrath (2005b) HIV-1 phylodynamic analysis in distinct brain compartments provides a model for the neuropathogenesis of AIDS.J. Virol. 79, 11343–11352.

    Article  CAS  Google Scholar 

  • Scaravilli F, SE Daniel, N Harcourt-Webster and RJ Guiloff (1989) Chronic basal meningitis and vasculitis in acquired immunodeficiency syndrome. A possible role for human immunodeficiency virus.Arch. Pathol. Lab. Med. 113, 192–195.

    PubMed  CAS  Google Scholar 

  • Schiltz JC and PE Sawchenko (2002) Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults.J. Neurosci. 22, 5606–5618.

    PubMed  CAS  Google Scholar 

  • Schindelmeiser J and F Gullotta (1991) HIV-p24-antigen-bearing macrophages are only present in brains of HIV-seropositive patients with AIDS-encephalopathy.Clin. Neuropathol. 10, 109–111.

    PubMed  CAS  Google Scholar 

  • Shiramizu B, S Gartner, A Williams, C Shikuma, S Ratto-Kim, M Watters, J Aguon and V Valcour (2005) Circulating proviral HIV DNA and HIV-associated dementia.AIDS 19, 45–52.

    Article  PubMed  Google Scholar 

  • Simon MA, LV Chalifoux and DJ Ringler (1992) Pathologic features of SIV-induced disease and the association of macrophage infection with disease evolution.AIDS Res. Hum. Retroviruses 8, 327–337.

    PubMed  CAS  Google Scholar 

  • Smith MO, MP Heyes and AA Lackner (1995) Early intrathecal events in rhesus macaques (Macaca mulatta) infected with pathogenic or nonpathogenic molecular clones of simian immunodeficiency virus.Lab. Invest. 72, 547–558.

    PubMed  CAS  Google Scholar 

  • Smith MS, Y Niu, Z Li, I Adany, DM Pinson, ZQ Liu, T Berry D Sheffer, F Jia and O Narayan (2002) Systemic infection and limited replication of SHIV vaccine virus in brains of macaques inoculated intracerebrally with infectious viral DNA.Virology 301, 130–135.

    Article  PubMed  CAS  Google Scholar 

  • Smith TW, U DeGirolami, D Henin, F Bolgert and J-J Hauw (1990) Human immunodeficiency virus (HIV) leukoencephalopathy and the microcirculation.J. Neuropathol. Exp. Neurol. 49, 357–370.

    Article  PubMed  CAS  Google Scholar 

  • Sonza S, HP Mutimer, R Oelrichs, D Jardine, K Harvey, A Dunne, DF Purcell, C Birch and SM Crowe (2001) Monocytes harbour replication-competent, non-latent HIV in patients on highly active antiretroviral therapy.AIDS 15, 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Stephens EB, DK Singh, ME Kohler, M Jackson, E Pacyniak and NE Berman (2003) The primary phase of infection by pathogenic simian-human immunodeficiency virus results in disruption of the blood-brain barrier.AIDS Res. Hum. Retroviruses 19, 837–846.

    Article  PubMed  Google Scholar 

  • Streit WJ and MB Graeber (1993) Heterogeneity of microglial and perivascular cell populations: insights gained from the facial nucleus paradigm.Glia 7, 68–74.

    Article  PubMed  CAS  Google Scholar 

  • Teo I, C Veryard, H Barnes, SF An, M Jones, PL Lantos, P Luthert and S Shaunak (1997) Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS.J. Virol. 71, 2928–2933.

    PubMed  CAS  Google Scholar 

  • Thieblemont N, L Weiss, HM Sadeghi, C Estcourt and N Haeffner-Cavaillon (1995) CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection.Eur. J. Immunol. 25, 3418–3424.

    Article  PubMed  CAS  Google Scholar 

  • Tracey I, LM Hamberg, AR Guimaraes, G Hunter, I Chang, BA Navia and RG Gonzalez (1998) Increased cerebral blood volume in HIV-positive patients detected by functional MRI.Neurology 50, 1821–1826.

    PubMed  CAS  Google Scholar 

  • Vallieres L and PE Sawchenko (2003) Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity.J. Neurosci. 23, 5197–5207.

    PubMed  CAS  Google Scholar 

  • Vehmas A, J Lieu, CA Pardo, JC McArthur and S Gartner (2004) Amyloid precursor protein expression in circulating monocytes and brain macrophages from patients with HIV-associated cognitive impairment.J. Neuroimmunol. 157, 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Venkateshan CN, R Narayanan, MG Espey, JR Moffett, DC Gajdusek, CJ Gibbs Jr and MAA Namboodiri (1996) Immunocytochemical localization of the endogenous neuroexcitotoxin quinolinate in human peripheral blood monocytes/macrophages and the effect of human T-cell lymphotropic virus type I infection.Proc. Natl. Acad. Sci. USA 93, 1636–1641.

    Article  PubMed  CAS  Google Scholar 

  • Walker WS (1999) Separate precursor cells for macrophages and microglia in mouse brain: immunophenotypic and immunoregulatory properties of the progeny.J. Neuroimmunol. 94, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Wang TH, YK Donaldson, RP Brettle, JE Bell and P Simmonds (2001) Identification of shared populations of human immunodeficiency virus type 1 infecting microglia and tissue macrophages outside the central nervous system.J. Virol. 75, 11686–11699.

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, TJ O’Leary, GB Baskin, R Benveniste, CA Harris, PL Nara and RH Rhodes (1987) Immunohistochemical localization of human and simian immunodeficiency viral antigens in fixed tissue sections.Am. J. Pathol. 127, 199–205.

    PubMed  CAS  Google Scholar 

  • Weis S, H Haug and H Budka (1996) Vascular changes in the cerebral cortex in HIV-1 infection: I. A morphometric investigation by light and electron microscopy.Clin. Neuropathol. 15, 361–366.

    PubMed  CAS  Google Scholar 

  • Williams AE and WF Blakemore (1990) Monocyte-mediated entry of pathogens into the central nervous system.Neuropathol. Appl. Neurobiol. 16, 377–392.

    Article  PubMed  CAS  Google Scholar 

  • Williams KC, S Corey, SV Westmoreland, D Pauley, H Knight, C deBakker, X Alvarez and AA Lackner (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS.J. Exp. Med. 193, 905–915.

    Article  PubMed  CAS  Google Scholar 

  • Williams K, S Westmoreland, J Greco, E Ratai, M Lentz, WK Kim, RA Fuller, JP Kim, P Autissier, PK Sehgal, RF Schinazi, N Bischofberger, M Piatak Jr, JD Lifson, E Masliah and RG González (2005) Magnetic resonance spectroscopy reveals a role of activated monocytes contributing to neuronal injury in simian immunodeficiency virus neuroAIDS.J. Clin. Invest. 115, 2534–2545.

    Article  PubMed  CAS  Google Scholar 

  • Zembala M, S Bach, A Szczepanek, G Mancino and V Colizzi (1997) Phenotypic changes of monocytes induced by HIV-1 gp120 molecule and its fragments.Immunobiology 197, 110–121.

    PubMed  CAS  Google Scholar 

  • Zhu T, D Muthui, S Holte, D Nickle, F Feng, S Brodie, Y Hwangbo, JI Mullins and L Corey (2002) Evidence for human immunodeficiency virus type 1 replicationin vivo in CD14+ monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy.J. Virol. 76, 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler-Heitbrock HW (2000) Definition of human blood monocytes.J. Leukoc. Biol. 67, 603–606.

    PubMed  CAS  Google Scholar 

  • Ziegler-Heitbrock HW and RJ Ulevitch (1993) CD14: cell surface receptor and differentiation marker.Immunol. Today 14, 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler-Heitbrock HW, M Strobel, G Fingerle, T Schlunck, A Pforte, M Blumenstein and JG Haas (1991) Small (CD14+/CD16+) monocytes and regular monocytes in human blood.Pathobiology 59, 127–130.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, WK., Alvarez, X. & Williams, K. The role of monocytes and perivascular macrophages in HIV and SIV neuropathogenesis: Information from non-human primate models. neurotox res 8, 107–115 (2005). https://doi.org/10.1007/BF03033823

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033823

Keywords

Navigation