Skip to main content
Log in

The roles of proteolysis and nuclear localisation in the toxicity of the polyglutamine diseases. A review

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The polyglutamine disorders consist of a group of nine neurodegenerative diseases with overlapping phenotypes, but which affect distinct neuronal subsets, causing neuronal dysfunction and death. In the majority of these, the causative proteins share no homology to other known proteins, or to each other apart from the polyglutamine tract. The polyglutamine tracts themselves are toxic over a disease- specific threshold, and this common feature has suggested a common pathogenesis. The pathogenic mechanism(s) of this group of diseases is hotly debated, with proteolytic cleavage and nuclear accumulation both popular hypotheses. Such cleavage is thought to release toxic fragments containing an expanded polyglutamine tract, and may itself facilitate entry of cytoplasmic polyglutamine proteins to the nucleus. Numerous downstream effects including accumulation and apoptotic activation, misfolding, aggregation, and sequestration of other proteins including transcription factors and chaperones may then be initiated.

It is uncertain whether all of the polyglutamine proteins undergo cleavagein vivo. Even in those in which proteolysis has been demonstrated, it remains unclear to what extent this also occurs in the wild- type proteins, or whether it is dependent on, or increased by, the expanded polyglutamine tract. Similarly, in at least one of these disorders (spinocerebellar ataxia type 6), nuclear localisation has not been demonstrated.

The contradictory evidence for the production and role of proteolytic fragments and for nuclear localisation in toxicity, reviewed in this article, suggests that neither may be uniformly necessary steps in the pathogenesis of this group of diseases, and that, for all their apparent similarities, the exact pathogenic mechanisms may not be identical in each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ab:

antibody

AR:

Androgen receptor

DRPLA:

dentatorubral-pallidoluysian atrophy

HD:

Huntington’s disease

HPRT:

hypoxanthine phosphoribosyl transferase protein; htt, huntingtin

MAP:

phosphorylation, mitogen-activated protein phosphorylation

NES:

Nuclear export signal

NII:

Neuronal intranuclear inclusion

NLS:

Nuclear localisation signal

PolyQ:

Polyglutamine

Q:

glutamine

SBMA:

spinobulbar muscular atrophy

SCA:

spinocerebellar ataxia

TAF:

TBP-associated factors

TBP:

TATA binding protein

References

  • Babovic-Vuksanovic D, K Snow, MC Patterson and VV Michels (1998) Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion.Am. J. Med. Genetics 79, 383–387.

    CAS  Google Scholar 

  • Becher MW, JA Kotzuk, AH Sharp, SW Davies, GP Bates, DL Price and CA Ross (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT 15 CAG triplet repeat length.Neurobiol. Dis. 4, 387–397.

    PubMed  CAS  Google Scholar 

  • Berke SJ, FA Schmied, ER Brunt, LM Ellerby and HL Paulson (2004) Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3.J. Neurochem. 89, 908–918.

    Google Scholar 

  • Brown TR, DB Lubahn, EM Wilson, DR Joseph, FS French and CJ Migeon (1988) Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: evidence for further genetic heterogeneity in this syndrome.Proc. Natl. Acad. Sci. USA 85, 8151–8155.

    PubMed  CAS  Google Scholar 

  • Burley SK (1996) The TATA box binding protein.Curr. Opin. Struct. Biol. 6, 69–75.

    PubMed  CAS  Google Scholar 

  • Busch A, S Engemann, R Lurz, H Okazawa, H Lehrach and EE Wanker (2003) Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington’s disease.J. Biol. Chem. 278, 41452–41461.

    PubMed  CAS  Google Scholar 

  • Callewaert L, V Christiaens, A Haelens, G Verrijdt, G Verhoeven and F Claessens (2003) Implications of a polyglutamine tract in the function of the human androgen receptor.Biochem. Biophys. Res. Commun. 306, 46–52.

    PubMed  CAS  Google Scholar 

  • Cancel G, C Duyckaerts, M Holmberg, C Zander, G Yvert, AS Lebre, M Ruberg, B Faucheux, Y Agid, E Hirsch and A Brice (2000) Distribution of ataxin-7 in normal human brain and retina.Brain 123, 2519–2530.

    PubMed  Google Scholar 

  • Chai Y, SL Koppenhafer, NM Boniniand HL Paulson (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease.J. Neurosci. 19, 10338–10347.

    PubMed  CAS  Google Scholar 

  • Chai YH, LZ Wu, JD Griffin and HL Paulson (2001) The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease.J. Biol. Chem. 276, 44889–44897.

    PubMed  CAS  Google Scholar 

  • Chai Y, J Shao, VM Miller, A Williams and HL Paulson (2002) Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis.Proc. Natl. Acad. Sci. USA 99, 9310–9315.

    PubMed  CAS  Google Scholar 

  • Chan EY, R Luthi-Carter, A Strand, SM Solano, SA Hanson, MM DeJohn, C Kooperberg, KO Chase, M DiFiglia, AB Young, BR Leavitt, JH Cha, N Aronin, MR Hayden and JM Olson (2002) Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington’s disease.Hum. Mol. Genet. 11, 1939–1951.

    PubMed  CAS  Google Scholar 

  • Chen S, V Berthelier, W Yang and R Wetzel (2001) Polyglutamine aggregation behaviorin vitro supports a recruitment mechanism of cytotoxicity.J. Mol. Biol. 311, 173–182.

    PubMed  CAS  Google Scholar 

  • Chen S,G-H Peng, X Wang, A Smith, S Grote, B Sopher and A La Spada (2004) Interference of Crx-dependent transcription by ataxin-7 involves interaction between the glutamine regions and requires the ataxin-7 carboxy-terminal region for nuclear localisation.Hum. Mol. Genet. 13, 53–67.

    PubMed  CAS  Google Scholar 

  • Cummings CJ, MA Mancini, B Antalffy, DB DeFranco, HT Orr and HY Zoghbi (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1.Nat. Genet. 19, 148–154.

    PubMed  CAS  Google Scholar 

  • Cummings CJ, E Reinstein, Y Sun, B Antalffy, Y Jiang, A Ciechanover, HT Orr, AL Beaudet and HY Zoghbi (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice.Neuron 24, 879–892.

    PubMed  CAS  Google Scholar 

  • Difiglia M, E Sapp, KO Chase, SW Davies, GP Bates, JP Vonsattel and N Aronin (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain.Science 277, 1990–1993.

    PubMed  CAS  Google Scholar 

  • Donaldson KM, W Li, KA Ching, S Batalov, CC Tsai and CA Joazeiro (2003) Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates.Proc. Natl. Acad. Sci. USA 100, 8892–8897.

    PubMed  CAS  Google Scholar 

  • Duyao MP, AB Auerbach, A Ryan, F Persichetti, GT Barnes, SM McNeil, P Ge, J-P Vonsattel, JF Gusella, AL Joyner and ME MacDonald (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh.Science 269, 407–410.

    PubMed  CAS  Google Scholar 

  • Duyckaerts C, A Durr, G Cancel and A Brice (1999) Nuclear inclusions in spinocerebellar ataxia type 1.Acta Neuropathol. (Berlin) 97, 201–207.

    CAS  Google Scholar 

  • Dyer RB and CT McMurray (2001) Mutant protein in Huntington disease is resistant to proteolysis in affected brain.Nat. Gene. 29, 270–278.

    CAS  Google Scholar 

  • Ellerby LM, AS Hackam, SS Propp, HM Ellerby, S Rabizadeh, NR Cashman, MA Trifiro, L Pinsky, CL Wellington, GS Salvesen, MR Hayden and DE Bredesen (1999) Kennedy’s disease: caspase cleavage of the androgen receptor is a crucial event in cytotoxicity.J. Neurochem. 72, 185–195.

    PubMed  CAS  Google Scholar 

  • Evert BO, U Wullner, JB Shulz, M Weller, P Groscurth, Y Trottier, A Brice and T Klockgether (1999) High level expression of expanded full-length ataxin-3in vitro causes cell death and formation of intranuclear inclusions in neuronal cells.Hum. Mol. Genet. 8, 1169–1176.

    PubMed  CAS  Google Scholar 

  • Fernandez M, ME McClain, RA Martinez, K Snow, H Lipe, J Ravits, TD Bird and AR La Spada (2000) Late-onset SCA2: 33 CAG repeats are sufficient to cause disease.Neurology 55, 569–572.

    PubMed  CAS  Google Scholar 

  • Frontali M (2001) Spinocerebellar ataxia type 6: channelopathy or glutamine repeat disorder?Brain Res. Bull. 56, 227–231.

    PubMed  CAS  Google Scholar 

  • Fujigasaki H, JJ Martin, PP De Deyn, A Camuzat, D Deffond, G Stevanin, B Dermaut, C Van Broeckhoven, A Durr and A Brice (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia.Brain 124, 1939–1947.

    PubMed  CAS  Google Scholar 

  • Gafni J and LM Ellerby (2002) Calpain activation in Huntington’s disease.J. Neurosci. 22, 4842–4849.

    PubMed  CAS  Google Scholar 

  • Gafni J, E Hermel, JE Young, CL Wellington, MR Hayden and LM Ellerby (2004) Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus.J. Biol.Chem. 279, 20211–20220.

    PubMed  CAS  Google Scholar 

  • Garden GA, RT Libby, YH Fu, Y Kinoshita, J Huang, DE Possin, AC Smith, RA Martinez, GC Fine, SK Grote, CB Ware, DD Einum, RS Morrison, LJ Ptacek, BL Sopher and AR La Spada (2002) Polyglutamine-expanded ataxin-7 promotes non-cellautonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice.J. Neurosci. 22, 4897–4905.

    PubMed  CAS  Google Scholar 

  • Goldberg YP, DW Nichloson, DM Rasper, MA Kalchman, HB Koide, RK Graham, M Bromm, P Kazemi-Esfarjani, NA Thornberry, JP Vaillantcourt and MR Hayden (1996) Cleavage of huntingtin by apopain, a proapoptopic cysteine protease, is modulated by the polyglutamine tract.Nat. Genet. 13, 442–449.

    PubMed  CAS  Google Scholar 

  • Greenland KJ and JD Zajac (2004) Kennedy’s disease: pathogenesis and clinical approaches.Intern. Med. J. 34, 279–286.

    PubMed  CAS  Google Scholar 

  • Hackam AS, R Singaraja, C Wellington, M Metzler, K McCutcheon, T Zhang, M Kalchman and M Hayden (1998) The influence of huntingtin protein size on nuclear localisation and cellular toxicity.J. Cell. Biol. 141, 1097–1105.

    PubMed  CAS  Google Scholar 

  • Harjes P and EE Wanker (2003) The hunt for huntingtin function: interaction partners tell many different stories.Trends Biochem. Sci. 28, 425–433.

    PubMed  CAS  Google Scholar 

  • Helmlinger D, S Hardy, S Sasorith, F Klein, F Robert, C Weber, L Miguet, N Potier, A Van-Dorsselaer, JM Wurtz, JL Mandel, L Tora and D Devys (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes.Hum. Mol. Genet. 13, 1257–1265.

    PubMed  CAS  Google Scholar 

  • Hodgson JG, N Agopyan, C-A Gutekunst, BR Leavitt, F LePiane, R Singaraja, DJ Smith, N Bissada, K McCutcheon, J Nasir, L Jamot, X-J Li, ME Stevens, E Rosemond, JC Roder, AG Philips, EM Rubin, SM Hersch and MR Hayden (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration.Neuron 23, 181–192.

    PubMed  CAS  Google Scholar 

  • Hofmann K and L Falquet (2001) A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems.Trends Biochem. Sci. 26, 347–350.

    PubMed  CAS  Google Scholar 

  • Holmberg M, C Duyckaerts, A Durr, G Cancel, I Gourfinkelan, P Damier, B Faucheux, Y Trottier, EC Hirsch, Y Agid and A Brice (1998) Spinocerebellar ataxia type 7 (SCA 7) - a neurodegenerative disorder with neuronal intranuclear inclusions.Hum. Mol. Genet. 7, 913–918.

    PubMed  CAS  Google Scholar 

  • Hoshino M, K Tagawa, T Okuda, M Murata, K Oyanagi, N Arai, T Mizutani, I Kanazawa, EE Wanker and H Okazawa (2003) Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein.J. Neurochem. 87, 257–267.

    PubMed  CAS  Google Scholar 

  • Huynh DP,MR Del Bigio, DH Ho and SM Pulst (1999) Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer’s disease and spinocerebellar ataxia 2.Ann. Neurol. 45, 232–241.

    PubMed  CAS  Google Scholar 

  • Huynh DP, K Figueroa, N Hoang and SM Pulst (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human.Nat. Genet. 26, 44–50.

    PubMed  CAS  Google Scholar 

  • Huynh DP, HT Yang, H Vakharia, D Nguyen and SM Pulst (2003) Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death.Hum. Mol. Genet. 12, 1485–1496.

    PubMed  CAS  Google Scholar 

  • Ikeda H, M Yamaguchi, S Sugai, Y Aze, S Narumiya and A Kakizuka (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell deathin vitro andin vivo.Nat. Genet. 13, 196–202.

    PubMed  CAS  Google Scholar 

  • Ikeuchi T, H Takano, R Koide, Y Horikawa, Y Honma, Y Onishi, S Igarashi, H Tanaka, N Nakao, K Sahashi, H Tsukagoshi, K Inoue, H Takahashi and S Tsuji (1997) Spinocerebellar ataxia type 6: CAG repeat expansion in alpha1A voltage-dependent calcium channel gene and clinical variations in Japanese population.Ann. Neurol. 42, 879–884.

    PubMed  CAS  Google Scholar 

  • Imbert G, F Saudou, G Yvert, D Devys, Y Trottier, JM Garnier, C Weber, JL Mandel, G Cancel, N Abbas, A Durr, O Didierjean, G Stevanin, Y Agid and A Brice (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats.Nat. Genet. 14, 285–291.

    PubMed  CAS  Google Scholar 

  • Ishikawa K, H Fujigasaki, H Saegusa, K Ohwada, F Fujita, H Iwamoto, Y Komatsuzaki, S Toru, H Toriyama, H Watanabe, N Ohkoshi, S Shoji, I Kanazawa, T Tanabe and H Mizusawa (1999) Abundant expression and cytoplasmic aggregations of α1 A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6.Hum. Mol. Genet. 8, 1185–1193.

    PubMed  CAS  Google Scholar 

  • Ishikawa K, K Owada, K Ishida, H Fujigasaki, M Shun Li, T Tsunemi, N Ohkoshi, S Toru, T Mizutani, M Hayashi, N Arai, K Hasegawa, T Kawanami, T Kato, T Makifuchi, S Shoji, T Tanabe and H Mizusawa (2001) Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells.Neurology 56, 1753–1756.

    PubMed  CAS  Google Scholar 

  • Jonasson J, AL Strom, P Hart, T Brannstrom, L Forsgren and M Holmberg (2002) Expression of ataxin-7 in CNS and non-CNS tissue of normal and SCA7 individuals.Acta Neuropathol. 104, 29–37.

    PubMed  CAS  Google Scholar 

  • Katsuno M, H Adachi, A Kume, M Li, Y Nakagomi, H Niwa, C Sang, Y Kobayashi, M Doyu and G Sobue (2002) Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy.Neuron 35, 843–854.

    PubMed  CAS  Google Scholar 

  • Kaytor MD, LA Duvick, PJ Skinner, MD Koob, LP Ranum and HT Orr (1999) Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin-7.Hum. Mol. Genet. 8 1657–1664.

    PubMed  CAS  Google Scholar 

  • Kiehl TR, H Shibata, T Vo, DP Huynh and SM Pulst (2001) Identification and expression of a mouse ortholog of A2BP1.Mamm. Genome 12, 595–601.

    PubMed  CAS  Google Scholar 

  • Kim YJ, Y Yi, E Sapp, Y Wang, B Cuiffo, KB Kegel, ZH Qin, N Aronin and M DiFiglia (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis.Proc. Natl. Acad. Sci. USA 98, 12784–12789.

    PubMed  CAS  Google Scholar 

  • Kita H, J Carmichael, J Swartz, S Muro, A Wyttenbach, K Matsubara, DC Rubinsztein and K Kato (2002) Modulation of polyglutamine-induced cell death by genes identified by expression profiling.Hum. Mol. Genet. 11, 2279–2287.

    PubMed  CAS  Google Scholar 

  • Klement IA, PJ Skinner, MD Kaytor, H Yi, SM Hersch, HB Clark and HT Orr (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease inSCA1 transgenic mice.Cell 95, 41–53.

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, S Miwa, DE Merry, A Kume, L Mei, M Doyu and G Sobue (1998) Caspase-3 cleaves the expanded androgen receptor protein of spinal and bulbar muscular atrophy in a polyglutamine repeat length-dependent manner.Biochem. Biophys. Res. Commun. 252, 145–150.

    PubMed  CAS  Google Scholar 

  • Koide R, S Kobayashi, T Shimohata, T Ikeuchi, M Maruyama, M Saito, M Yamada, H Takahashi and S Tsuji (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease?Hum. Mol. Genet. 8, 2047–2053.

    PubMed  CAS  Google Scholar 

  • Koyano S, T Uchihara, H Fujigasaki, A Nakamura, S Yagishita and K Iwabuchi (1999) Neuronal intranuclear inclusions in spinocerebellar ataxia type 2: triple-labeling immunofluorescent study.Neurosci. Lett. 273, 117–120.

    PubMed  CAS  Google Scholar 

  • Koyano S, K Iwabuchi, S Yagishita, Y Kuroiwa and T Uchihara (2002) Paradoxical absence of nuclear inclusion in cerebellar Purkinje cells of hereditary ataxias linked to CAG expansion.J. Neurol. Neurosurg. Psychiatry 73, 450–452.

    PubMed  CAS  Google Scholar 

  • Kubodera T, T Yokota, K Ohwada, K Ishikawa, H Miura, T Matsuoka and H Mizusawa (2003) Proteolytic cleavage and cellular toxicity of the human alpha1A calcium channel in spinocerebellar ataxia type 6.Neurosci. Lett. 341, 74–78.

    PubMed  CAS  Google Scholar 

  • La Spada AR, EM Wilson, DB Lubahn, AE Harding and KH Fischbeck (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy.Nature 352, 77–79.

    PubMed  Google Scholar 

  • La Spada AR, DB Roling, AE Harding, CL Warner, R Spiegel, I Hausmanowa-Petrusewicz, WC Yee and KH Fischbeck (1992) Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy.Nat. Genet. 2, 301–304.

    PubMed  Google Scholar 

  • La Spada AR, YH Fu, BL Sopher, RT Libby, XJ Wang, LY Li, DD Einum, J Huang, DE Possin, AC Smith, RA Martinez, KL Koszdin, PM Treuting, CB Ware, JB Hurley, LJ Ptacek and SM Chen (2001) Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7.Neuron 31, 913–927.

    PubMed  Google Scholar 

  • LaFevre-Bernt MAand LM Ellerby (2003) Kennedy’s disease. Phosphorylation of the polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and enhances cell death.J. Biol. Chem. 278, 34918–34924.

    Google Scholar 

  • Leavitt BR, JA Guttman, JG Hodgson, GH Kimel, R Singaraja, AW Vogl and MR Hayden (2001) Wild-type huntingtin reduces the cellular toxicity of mutant huntingtinin vivo.Am. J. Hum. Genet. 68, 313–324.

    PubMed  CAS  Google Scholar 

  • Li F, T Macfarlan, RN Pittman and D Chakravarti (2002) Ataxin-3 is a hi stone-binding protein with two independent transcriptional corepressor activities.J. Biol. Chem. 277, 45004–45012.

    PubMed  CAS  Google Scholar 

  • Li H, SH Li, H Johnston, PF Shelbourne and XJ Li (2000) Aminoterminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity.Nat. Genet. 25, 385–389.

    PubMed  CAS  Google Scholar 

  • Li M, S Miwa, Y Kobayashi, DE Merry, M Yamamoto, F Tanaka, M Doyu, Y Hashizume, KH Fischbeck and G Sobue (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy.Ann. Neurol. 44, 249–254.

    PubMed  CAS  Google Scholar 

  • Lindenberg KS, G Yvert, K Muller and GB Landwehrmeyer (2000) Expression analysis of ataxin-7 mRNA and protein in human brain: evidence for a widespread distribution and focal protein accumulation.Brain Pathol. 10, 385–394.

    PubMed  CAS  Google Scholar 

  • Lunkes A and JL Mandel (1998) A cellular model that recapitulates major pathogenic steps of Huntington’s disease.Hum. Mol. Genet. 7, 1355–1361.

    PubMed  CAS  Google Scholar 

  • Luthi-Carter R, AD Strand, SA Hanson, C Kooperberg, G Schilling, AR La Spada, DE Merry, AB Young, CA Ross, DR Borchelt and JM Olson (2002) Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington’s disease mouse models reveal context-independent effects.Hum. Mol. Genet. 11, 1927–1937.

    PubMed  CAS  Google Scholar 

  • Masino L, V Musi, RP Menon, P Fusi, G Kelly, TA Frenkiel, Y Trottier and A Pastore (2003) Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail.FEBSLett. 549, 21–25.

    CAS  Google Scholar 

  • Mende-Mueller LM, T Toneff, SR Hwang, MF Chesselet and VYH Hook (2001) Tissue-specific proteolysis of huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington’s disease striatum.J. Neurosci. 21, 1830–1837.

    PubMed  CAS  Google Scholar 

  • Miyashita T, Y Okamura-Oho, Y Mito, S Nagafuchi and M Yamada (1997) Dentatorubral pallidoluysian atrophy (DRPLA) protein is cleaved by caspase-3 during apoptosis.J. Biol. Chem. 272, 29238–29242.

    PubMed  CAS  Google Scholar 

  • Nakamura K, SY Jeong, T Uchihara, M Anno, K Nagashima, T Nagashima, S Ikeda, S Tsuji and I Kanazawa (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein.Hum. Mol. Genet. 10, 1441–1448.

    PubMed  CAS  Google Scholar 

  • Nucifora FC, M Sasaki, MF Peters, H Huang, JK Cooper, M Yamada, H Takahashi, S Tsuji, J Troncoso, VL Dawson, TM Dawson and CA Ross (2001) Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity.Science 291, 2423–2428.

    PubMed  CAS  Google Scholar 

  • Nucifora FC Jr, LM Ellerby, CL Wellington, JD Wood, WJ Herring, A Sawa, MR Hayden, VL Dawson, TM Dawson and CA Ross (2003) Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity.J. Biol. Chem. 278, 13047–13055.

    PubMed  CAS  Google Scholar 

  • Ophoff RA, GM Terwindt, MN Vergouwe, R van Eijk, P Oefner, SMG Hoffman, JE Lamerdin, HW Mohrenweiser, DE Bulman, M Ferrair, J Haan, D Lindhout, G-J B van Ommen, MH Hofker, MD Ferrari and RR Frants (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4.Cell 87, 543–552.

    PubMed  CAS  Google Scholar 

  • Ordway JM, S Tallaksen-Greene, C-A Gutekunst, EM Bernstein, JA Cearley, HW Wiener, LS Dure IV, R Lindsey, SM Hersch, RS Jope, RL Albin and PJ Detloff (1997) Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse.Cell 91, 753–763.

    PubMed  CAS  Google Scholar 

  • Ordway JM, JA Cearley and PJ Detloff (1999) CAG-polyglutamine-repeat mutations: independence from gene context.Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1083–1088.

    PubMed  CAS  Google Scholar 

  • Orr HT and HY Zoghbi (2001) SCA1 molecular genetics: a history of a 13 year collaboration against glutamines.Hum. Mol. Genet. 10, 2307–2311.

    PubMed  CAS  Google Scholar 

  • Pang JT, P Giunti, S Chamberlain, SF An, R Vitaliani, T Scaravilli, L Martinian, NW Wood, F Scaravilli and O Ansorge (2002) Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two cases.Brain 125, 656–663.

    PubMed  Google Scholar 

  • Panov AV, CA Gutekunst, BR Leavitt, MR Hayden, JR Burke, WJ Strittmatter and JT Greenamyre (2002) Early mitochondrial caldefects in Huntington’s disease are a direct effect of polyglutamines.Nat. Neurosci. 5, 731–736.

    PubMed  CAS  Google Scholar 

  • Paulson HL, MK Perez, Y Trottier, JQ Trojanowski, SH Subramony, SS Das, P Vig, JL Mandel, KH Fischbeck and RN Pittman (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3.Neuron 19, 333–344.

    PubMed  CAS  Google Scholar 

  • Perez MK, HL Paulson and RN Pittman (1999) Ataxin-3 with an altered conformation that exposes the polyglutamine domain is associated with the nuclear matrix.Hum. Mol. Genet. 8, 2377–2385.

    PubMed  CAS  Google Scholar 

  • Peters MF, FC Nucifora, Jr., J Kushi, HC Seaman, JK Cooper, WJ Herring, VL Dawson, TM Dawson and CA Ross (1999) Nuclear targeting of mutant huntingtin increases toxicity.Mol. Cell. Neurosci. 14, 121–128.

    PubMed  CAS  Google Scholar 

  • Pulst SM, A Nechiporuk, T Nechiporuk, S Gispert, XN Chen, I Lopescendes, S Pearlman, S Starkman, G Orozcodiaz, A Lunkes, P Dejong, GA Rouleau, G Auburger, JR Korenberg, C Figueroa and S Sahba (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2.Nat. Genet. 14, 269–276.

    PubMed  CAS  Google Scholar 

  • Reid SJ, MI Rees, WM van Roon-Mom, AL Jones, ME MacDonald, G Sutherland, MJ During, RL Faull, MJ Owen, M Dragunow and RG Snell (2003) Molecular investigation of TBP allele length: a SCA17 cellular model and population study.Neurobiol. Dis. 13, 37–45.

    PubMed  CAS  Google Scholar 

  • Rigamonti D, JH Bauer, C De-Fraja, L Conti, S Sipione, C Sciorati, E Clementi, A Hackam, MR Hayden, Y Li, JK Cooper, CA Ross, S Govoni, C Vincenz and E Cattaneo (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J.Neurosci. 20, 3705–3713.

    CAS  Google Scholar 

  • Rubinsztein DC (2002) Lessons from animal models of Huntington’s disease.Trends Genet. 18, 202–209.

    PubMed  CAS  Google Scholar 

  • Rubinsztein DC, A Wyttenbach and J Rankin (1999) Intracellular inclusions, pathological markers in diseases caused by expanded polyglutamine tracts?J. Med. Genet. 36, 265–270.

    PubMed  CAS  Google Scholar 

  • Sanpei K, H Takano, S Igarashi, T Sato, M Oyake, H Sasaki, A Wakisaki, K Tashiro, Y Ishida, R Koide, M Saito, A Sato, T Tanaka, S Hanyu, Y Takiyama, M Nishizawa, M Shimizu, Y Nomura, M Seqawa, K Iwabuchi, I Eguchi, H Tanaka, H Takahashi and S Tsuji (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT.Nat. Genet. 14, 277–284.

    PubMed  CAS  Google Scholar 

  • Sato A, T Shimohata, R Koide, H Takano, T Sato, M Oyake, S Igarashi, K Tanaka, T Inuzuka, H Nawa and S Tsuji(1999) Adenovirus-mediated expression of mutant DRPLA proteins with expanded polyglutamine stretches in neuronally differentiated PC 12 cells. Preferential intranuclear aggregate formation and apoptosis.Hum. Mol. Genet. 8, 997–1006.

    PubMed  CAS  Google Scholar 

  • Satterfield TF, SM Jackson and LJ Pallanck (2002) A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosagesensitive regulator of actin filament formation.Genetics 162, 1687–1702.

    PubMed  CAS  Google Scholar 

  • Saudou F, S Finkbeiner, D Devys and ME Greenberg (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions.Cell 95, 55–66.

    PubMed  CAS  Google Scholar 

  • Schilling G, MW Becher, AH Sharp, HA Jinnah, K Duan, JA Kotzuk, HH Slunt, T Ratovitski, JK Cooper, NA Jenkins, NG Copeland, DL Price, CA Ross and DR Borchelt (1999a) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin.Hum. Mol. Genet. 8, 397–407.

    PubMed  CAS  Google Scholar 

  • Schilling G, JD Wood, K Duan, HH Slunt, V Gonzales, M Yamada, JK Cooper, RL Margolis, NA Jenkins, NG Copeland, H Takahashi, S Tsuji, DL Price, DR Borchelt and CA Ross (1999b) Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA.Neuron 24, 275–286.

    PubMed  CAS  Google Scholar 

  • Schmidt T, GB Landwehrmeyer, I Schmitt, Y Trottier, G Auburger, F Laccone, T Klockgether, M Volpel, JT Epplen, L Schols and O Riess (1998) An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients.Brain Pathol. 8, 669–679.

    PubMed  CAS  Google Scholar 

  • Schols L, P Bauer, T Schmidt, T Schulte and O Riess (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis.Lancet Neurol. 3, 291–304.

    PubMed  Google Scholar 

  • Shibata H, DP Huynh and SM Pulst (2000) A novel protein with RNA-binding motifs interacts with ataxin-2.Hum. Mol. Genet. 9, 1303–1313.

    PubMed  CAS  Google Scholar 

  • Sieradzan KA, AO Mechan, L Jones, EE Wanker, N Nukina and DMA Mann (1999) Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein.Exp. Neurol. 156, 92–99.

    PubMed  CAS  Google Scholar 

  • Simeoni S, MA Mancini, DL Stenoien, M Marcelli, NL Weigel, M Zanisi, L Martini and A Poletti (2000) Motoneuronal cell death is not correlated with aggregate formation of androgen receptors containing an elongated polyglutamine tract.Hum. Mol. Genet. 9, 133–144.

    PubMed  CAS  Google Scholar 

  • Skinner PJ, BT Koshy, CJ Cummings, IA Klement, K Helin, A Servadio, HY Zoghbi and HT Orr (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures.Nature 389, 971–974.

    PubMed  CAS  Google Scholar 

  • Steffan JS, A Kazantsev, O Spasic-Boskovic, M Greenwald, YZ Zhu, H Gohler, EE Wanker, GP Bates, DE Housman and LM Thompson (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription.Proc. Natl. Acad. Sci. USA 97, 6763–6768.

    PubMed  CAS  Google Scholar 

  • Stenoien DL, CJ Cummings, HP Adams, MG Mancini, K Patel, GN DeMartino, M Marcelli, NL Weigel and MA Mancini (1999) Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone.Hum. Mol. Genet. 8, 731–741.

    PubMed  CAS  Google Scholar 

  • Sugars KL and DC Rubinsztein (2003) Transcriptional abnormalities in Huntington disease.Trends Genet. 19, 233–238.

    PubMed  CAS  Google Scholar 

  • Sun B, W Fan, A Balciunas, JK Cooper, G Bitan, S Steavenson, PE Denis, Y Young, B Adler, L Daugherty, R Manoukian, G Elliott, W Shen, J Talvenheimo, DB Teplow, M Haniu, R Haldankar, J Wypych, CA Ross, M Citron and WG Richards (2002) Polyglutamine repeat length-dependent proteolysis of huntingtin.Neurobiol. Dis. 11, 111–122.

    PubMed  CAS  Google Scholar 

  • Tait D, M Riccio, A Sittler, E Scherzinger, S Santi, A Ognibene, NM Maraldi, H Lehrach and EE Wanker (1998) Ataxin-3 is transported into the nucleus and associates with the nuclear matrix.Hum. Mol. Genet. 7, 991–997.

    PubMed  CAS  Google Scholar 

  • Takahashi J, H Fujigasaki, C Zander, KH El Hachimi, G Stevanin, A Durr, AS Lebre, G Yvert, Y Trottier, H The, JJ Hauw, C Duyckaerts and A Brice (2002) Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content.Brain 125, 1534–1543.

    PubMed  Google Scholar 

  • Tallaksen-Greene SJ, JM Ordway, AB Crouse, WS Jackson, PJ Detloff and RL Albin (2003) Hprt (CAG)146 mice: age of onset of behavioral abnormalities, time course of neuronal intranuclear inclusion accumulation, neurotransmitter marker alterations, mitochondrial function markers, and susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.J. Comp. Neurol. 465, 205–219.

    PubMed  CAS  Google Scholar 

  • Tang TS, H Tu, EY Chan, A Maximov, Z Wang, CL Wellington, MR Hayden and I Bezprozvanny (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1.Neuron 39, 227–239.

    PubMed  CAS  Google Scholar 

  • Tao T and AM Tartakoff (2001) Nuclear relocation of normal huntingtin.Traffic 2, 385–394.

    PubMed  CAS  Google Scholar 

  • Tarlac V and E Storey (2003) Role of proteolysis in polyglutamine disorders.J. Neurosci. Res. 74, 406–416.

    PubMed  CAS  Google Scholar 

  • Toneff T, L Mende-Mueller, Y Wu, SR Hwang, R Bundey, LM Thompson, MF Chesselet and V Hook (2002) Comparison of huntingtin proteolytic fragments in human lymphoblast cell lines and human brain.J. Neurochem. 82, 84–92.

    PubMed  Google Scholar 

  • Trushina E, MP Heldebrant, CM Perez-Terzic, R Bortolon, IV Kovtun, JD Badger 2nd, A Terzic, A Estevez, AJ Windebank, RB Dyer, J Yao and CT McMurray (2003) Microtubule destabilization and nuclear entry are sequential steps leading to toxicity in Huntington’s disease.Proc. Natl. Acad. Sci. USA 100, 12171–12176.

    PubMed  CAS  Google Scholar 

  • Vig PJS, SH Subramony, Z Qin, DO McDaniel and JD Fratkin (2000) Relationship between ataxin-1 nuclear inclusions and Purkinje cell specific proteins in SCA-1 transgenic mice.J. Neurol. Sci. 174, 100–110.

    PubMed  CAS  Google Scholar 

  • Walcott JL and DE Merry (2002) Ligand promotes intranuclear inclusions in a novel cell model of spinal and bulbar muscular atrophy.J. Biol. Chem. 277, 50855–50859.

    PubMed  CAS  Google Scholar 

  • Wanker EE (2000) Protein aggregation and pathogenesis of Huntington’s disease: Mechanisms and correlations [Review].Biol. Chem. 381, 937–942.

    PubMed  CAS  Google Scholar 

  • Watase K, EJ Weeber, B Xu, B Antalffy, L Yuva-Paylor, K Hashimoto, M Kano, R Atkinson, Y Sun, DL Armstrong, JD Sweatt, HT Orr, R Paylor and HY Zoghbi (2002) A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration.Neuron 34, 905–919.

    PubMed  CAS  Google Scholar 

  • Wellington CL and MR Hayden (1997) Of molecular interactions, mice and mechanisms: new insights into Huntington’s disease.Curr. Opin. Neurol. 10, 291–298.

    PubMed  CAS  Google Scholar 

  • Wellington CL and MR Hayden (2000) Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches.Clin. Genet. 57, 1–10.

    PubMed  CAS  Google Scholar 

  • Wellington CL, LM Ellerby, AS Hackam, RL Margolis, MA Trifiro, R Singaraja, K McCutcheon, GS Salvesen, SS Propp, M Bromm, K Rowland, T Zhang, D Rasper, S Roy, N Thornberry, I Pinsky, A Kakizuka, CA Ross, DW Nicholson, DE Bredesen and MR Hayden (1998) Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract.J. Biol. Chem. 273, 9158–9167.

    PubMed  CAS  Google Scholar 

  • Wellington CL, R Singaraja, L Ellerby, J Savill, S Roy, B Leavitt, E Cattaneo, A Hackam, A Sharp, N Thornberry, DW Nicholson, DE Bredesen and MR Hayden (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells.J. Biol. Chem. 275, 19831–19838.

    PubMed  CAS  Google Scholar 

  • Wellington CL, LM Ellerby, CA Gutekunst, D Rogers, S Warby, RK Graham, O Loubser, J van Raamsdonk, R Singaraja, YZ Yang, J Gafni, D Bredesen, SM Hersch, BR Leavitt, S Roy, DW Nicholson and MR Hayden (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease.J. Neurosci. 22, 7862–7872.

    PubMed  CAS  Google Scholar 

  • Wheeler VC, JK White, C-A Gutekunst, V Vrbanac, M Weaver, X-J Li, S-H Li, H Yi, J-P Vonsattel, JF Gusella, S Hersch, W Auerbach, AL Joyner and ME MacDonald (2000) Long glutamine tracts cause nuclear localisation of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice.Hum. Mol. Genet. 9, 503–513.

    PubMed  CAS  Google Scholar 

  • Yamamoto A, JJ Lucas and R Hen (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease.Cell 101, 57–66.

    PubMed  CAS  Google Scholar 

  • Yang W, JR Dunlap, RB Andrews and R Wetzel (2002) Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells.Hum. Mol. Genet. 11, 2905–2917.

    PubMed  CAS  Google Scholar 

  • Yazawa I, N Nukina, H Hashida, J Goto, M Yamada and I Kanazawa (1995) Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain.Nat. Genet. 10, 99–103.

    PubMed  CAS  Google Scholar 

  • Yong EL, SC Ng, AC Roy, G Yun and SS Ratnam (1994) Pregnancy after hormonal correction of severe spermatogenic defect due to mutation in androgen receptor gene.Lancet 344, 826–827.

    PubMed  CAS  Google Scholar 

  • Yoo SY, ME Pennesi, EJ Weeber, B Xu, R Atkinson, S Chen, DL Armstrong, SM Wu, JD Sweatt and HY Zoghbi (2003) SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in shortterm plasticity.Neuron 37, 383–401.

    PubMed  CAS  Google Scholar 

  • Yvert G, KS Lindenberg, S Picaud, GB Landwehrmeyer, JA Sahel and JL Mandel (2000) Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice.Hum. Mol. Genet. 9, 2491–2506.

    PubMed  CAS  Google Scholar 

  • Yvert G, KS Lindenberg, D Devys, D Helmlinger, GB Landwehrmeyer and JL Mandel (2001) SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types.Hum. Mol. Genet. 10, 1679–1692.

    PubMed  CAS  Google Scholar 

  • Zander C, J Takahashi, KH El Hachimi, H Fujigasaki, V Albanese, AS Lebre, G Stevanin, C Duyckaerts and A Brice (2001) Similarities between spinocerebellar ataxia type 7 (SCA7) cell models and human brain: proteins recruited in inclusions and activation of caspase-3.Hum. Mol. Genet. 10, 2569–2579.

    PubMed  CAS  Google Scholar 

  • Zeitlin S, JP Liu, DL Chapman, VE Papaioannou and A Efstratiadis (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue.Nat. Genet. 11, 155–163.

    Google Scholar 

  • Zhang Y, M Li, M Drozda, M Chen, S Ren, RO Mejia Sanchez, BR Leavitt, E Cattaneo, RJ Ferrante, MR Hayden and RM Friedlander (2003) Depletion of wild-type huntingtin in mouse models of neurologic diseases.J. Neurochem. 87, 101–106.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Storey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, R., Storey, E., Stefani, D. et al. The roles of proteolysis and nuclear localisation in the toxicity of the polyglutamine diseases. A review. neurotox res 7, 43–57 (2005). https://doi.org/10.1007/BF03033775

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033775

Keywords

Navigation