Skip to main content
Log in

Does β-amyloid plaque formation cause structural injury to neuronal processes?

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The precise role of β-amyloid plaque formation in the cascade of brain cell changes that lead to neurodegeneration and dementia in Alzheimer’s disease has been unclear. Studies have indicated that neuronal processes surrounding and within plaques undergo a series of biochemical and morphological alterations. Morphological alterations include reactive, degenerative and sprouting-related ’dystrophic’ neuritic structures, derived principally from axons, which involve specific changes in cytoskeletal proteins such as tau and NF triplet proteins. More compact and fibrous plaques are associated with more extensive neuritic pathology than non-fibrillar, diffuse β-amyloid deposits. Cortical apical dendritic processes are either ‘clipped’ by plaque formation or are bent around more compact plaques. Examination of cases of ‘pathological’ brain ageing, which may represent a preclinical form of Alzheimer’s disease, demonstrated that the earliest neuritic pathology associated with plaques was similar to the reactive changes that follow structural injury to axons.In vivo andin vitro experimental models of structural injury to axons produce identical reactive changes that subsequently lead to an attempt at regenerative sprouting by damaged axons. Thus, β-amyloid plaque formation may cause structural injury to axons that is subsequently followed by an aberrant sprouting response that presages neurodegeneration and dementia. Identification of the key neuronal alterations underlying the pathology of Alzheimer’s disease may provide new avenues for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

DNs:

Dystrophic neurites

NFTs:

Neurofibrillary tangles

APP:

Amyloid precursor protein

NF:

Neurofilament

PHFs:

Paired helical filaments

ApoE:

Apolipoprotein E

cdk5:

Cyclin-dependent kinase 5

References

  • Adlard PA and JC Vickers (2002) Morphologically distinct plaque types differentially affect dendritic structure and organisation in the early and late stages of Alzheimer’s disease.Acta Neuropathol. 103, 377–383.

    PubMed  CAS  Google Scholar 

  • Arendt T (2001) Disturbance of neuronal plasticity is a critical pathogenetic event in Alzheimer’s disease.Int. J. Dev. Neurosci. 19, 231–245.

    PubMed  CAS  Google Scholar 

  • Arendt T (2003) Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the ’Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease or the yin and yang of neuroplasticity.Prog. Neurobiol. 71, 83–248.

    PubMed  Google Scholar 

  • Arendt T, J Stieler, AM Strijdstra, RA Hut, J Rudiger, EA Van der Zee, T Harkan, M Holzer and W Hartig (2003) Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals.J. Neurosci. 23, 6972–6981.

    PubMed  CAS  Google Scholar 

  • Armstrong RA (1998) β-amyloid plaques: stages in life history or independent origin.Dement. Geriatr. Cogn. Disord. 9, 227–238.

    PubMed  CAS  Google Scholar 

  • Arriagada PV, JH Growdon, ET Hedley-Whyte and BT Hyman (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease.Neurology 42, 631–639.

    PubMed  CAS  Google Scholar 

  • Benzing WW, MD Ikonomovic, DR Brady, EJ Mufson and DM Armstrong (1993) Evidence that transmitter-containing dystrophic neurites precede paired helical filament and Alz50 formation within senile plaques in the amygdala of nondemented elderly and patients with Alzheimer’s disease.J. Comp. Neurol. 334, 176–191.

    PubMed  CAS  Google Scholar 

  • Beyreuther K and CL Masters (1997) Alzheimer’s disease. The ins and outs of amyloid-beta.Nature 389, 677–678.

    PubMed  CAS  Google Scholar 

  • Bierer LM, PR Hof, DP Purohit, L Carlin, J Schmeidler, KL Davis and DP Perl (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease.Arch. Neurol. 52, 81–88.

    PubMed  CAS  Google Scholar 

  • Bondolfi L, M Calhoun, F Ermini, HG Kuhn, K-H Wiederhold, L Walker, M Staufenbiel and M Jucker (2002) Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice.J. Neurosci. 22, 515–522.

    PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, R Schwarzenbacher and SA Lipton (2004) Molecular pathways to neurodegeneration.Nat. Med. Suppl. 10, S2-S9.

    Google Scholar 

  • Braak H, E Braak, I Grundke-Iqbal and K Iqbal (1986) Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques.Neurosci. Lett. 65, 351–355.

    PubMed  CAS  Google Scholar 

  • Braak H and E Braak (1988) Neuropil threads occur in dendrites of tangle-bearing nerve cells.Neuropathol. Appl. Neurobiol. 14, 39–44.

    PubMed  CAS  Google Scholar 

  • Braak H and E Braak (1991) Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol. 82, 239–259.

    PubMed  CAS  Google Scholar 

  • Braak H and E Braak (1997) Neuropathological assessments staging of Alzheimer-related cortical destruction.Int. Psychogeriatr. 9, 257–261.

    PubMed  Google Scholar 

  • Brendza RP, C O-Brien, K Simmons, DW McKeel, KR Bales, SM Paul, JW Olney, JR Sanes and DM Holtzman (2003) PDAPP; YFP double transgenic mice: a tool to study amyloid-β associated changes in axonal, dendritic and synaptic structures.J. Comp. Neurol. 456, 375–383.

    PubMed  CAS  Google Scholar 

  • Brion JP (1996) The neurobiology of Alzheimer’s disease.Acta Clin. Belg. 51, 80–90.

    PubMed  CAS  Google Scholar 

  • Brodaty H, D Ames, KL Boundy, J Hecker, J Snowdon, E Storey and MW Yates (2001) Pharmacological treatment of cognitive deficites in Alzheimer’s disease.MJA 175, 324–327.

    PubMed  CAS  Google Scholar 

  • Busciglio J, DH Gabuzda, P Matsudaira and BA Yankner (1993) Generation of beta-amyloid in the secretory pathway in neuronal andnonneuronal cells.Proc. Natl. Acad. Sci. USA 90, 2092–2096.

    PubMed  CAS  Google Scholar 

  • Busser J, DS Geldmacher and K Herrup (1998) Ectopic cell cycle protein predict the sites of neuronal cell death in Alzheimer’s disease brain.J. Neurosci. 18, 2801–2807.

    PubMed  CAS  Google Scholar 

  • Bussière T, P Giannakopoulos, C Bouras, DP Perl, JH Morrison and PR Hof (2003) Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: stereologic analysis of prefrontal cortex area 9.J. Comp. Neurol. 463, 281–301.

    PubMed  Google Scholar 

  • Chin JY, RB Knowles, A Schneider, G Drewes, EM Mandelkow and BT Hyman (2000) Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study.J. Neuropathol. Exp. Neurol. 59, 966–971.

    PubMed  CAS  Google Scholar 

  • Christman CW, JJB Salvent, SA Walker and JT Povlishock (1997) Characterization of a prolonged regenerative attempt by diffusely injured axons following traumatic brain injury in adult cat: a light and electron microscopic immunocytochemical study.Acta Neuropathol. 94, 329–337.

    PubMed  CAS  Google Scholar 

  • Chuckowree JA and JC Vickers (2003) Cytoskeletal and morphological alterations underlying axonal sprouting after locialized transection of cortical neuron axonsin vitro. J. Neurosci. 23, 3715–3725.

    CAS  Google Scholar 

  • Chung RS, JC Vickers, MI Chuah and AK West (2003) Metallothionein-IIA promotes initial neurite elongation and postinjury reactive neurite growth and facilitates healing after focal cortical brain injury.J. Neurosci. 23, 3336–3342.

    PubMed  CAS  Google Scholar 

  • Cruz JC and LH Tsai (2004) Cdk5 deregulation in the pathogenesis of Alzheimer’s disease.Trends Mol. Med. 10, 454–458.

    Google Scholar 

  • Cummings BJ and CW Cotman (1995) Image analysis of β-amyloid load in Alzheimer’s disease and relation to demetia severity.Lancet 346, 1524–1528.

    PubMed  CAS  Google Scholar 

  • D’Amore JD, ST Kajdasz, ME McLellan, BJ Bacskai, EA Stern and BT Hyman (2003)In vivo mulitphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavin-S-associated alterations in neurite trajectories.J. Neuropathol. Exp. Neurol. 62, 137–145.

    PubMed  CAS  Google Scholar 

  • DeWitt DA and J Silver (1996) Regenerative failure: a potential mechanism for neuritic dystrophy in Alzheimer’s disease.Exp. Neurol. 142, 103–110.

    PubMed  CAS  Google Scholar 

  • Dickson DW, J Farlo, P Davies, H Crystal, P Fuld and S-HC Yen (1988) Alzheimer’s disease: a double-labelling immunohistochemical study of senile plaques.Am. J. Pathol. 132, 86–101.

    PubMed  CAS  Google Scholar 

  • Dickson TC, CE King, GH McCormack and JC Vickers (1999) Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer’s disease.Exp. Neurol. 156, 100–110.

    PubMed  CAS  Google Scholar 

  • Dickson TC, PA Adlard and JC Vickers (2000) Sequence of cellular changes following localized axotomy to cortical neurons in glia-free cultures.J. Neurotrauma 17, 1095–1103.

    PubMed  CAS  Google Scholar 

  • Dickson TC and JC Vickers (2001) The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer’s disease.Neuroscience 105, 99–107.

    PubMed  CAS  Google Scholar 

  • Dickson TC, JA Chuckowree, MI Chuah, AK West and JC Vickers (in press) Novel Alzheimer’s disease pathology reflects variable neuronal vulnerability and demonstrates the role of b-amyloid plaques in neurodegeneration. Neurobiol. Dis.in press.

  • Falke E, J Nissanov, TW Mitchell, DA Bennett, JQ Trojanowski and SE Arnold (2003) Subicular dendritic arborization in Alzheimer’s disease correlates with neurofibrillary tangle density.Am. J. Pathol. 163, 1615–1621.

    PubMed  Google Scholar 

  • Fraser PE, L Levesque and DR McLachlan (1993) Biochemistry of Alzheimer’s disease amyloid plaques.Clin. Biochem. 26, 339–349.

    PubMed  CAS  Google Scholar 

  • Fukumoto H, A Asami-Odaka, N Suzuki and T Iwatsubo (1996) Association of Aβ40-positive senile plaques with microglial cells in the brains of patients with Alzheimer’s disease and in nondemented aged individuals.Neurodegeneration 5, 13–17.

    PubMed  CAS  Google Scholar 

  • Giannakopoulos P, FR Herrmann, T Bussière, C Bouras, E Kovari, DP Perl, JH Morrison, G Gold and PR Hof (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease.Neurology 60, 1495–1500.

    PubMed  CAS  Google Scholar 

  • Haass C and DJ Selkoe (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide.Cell 75, 1039–1042.

    PubMed  CAS  Google Scholar 

  • Hardy J, K Duff, KG Hardy, J Perez-Tur and M Hutton (1998) Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau.Nat. Neurosci. 1, 355–358.

    PubMed  CAS  Google Scholar 

  • Hartley DM, DM Walsh, CP Ye, T Diehl, S Vazquez, PM Vassilev, DB Teplow, and DJ Selkoe (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons.J. Neurosci. 19, 8876–8884.

    PubMed  CAS  Google Scholar 

  • Hartmann T, SC Bieger, B Brühl, PJ Tienari, N Ida, D Allsop, GW Roberts, CL Masters, CG Dotti, K Unsicker and K Beyreuther (1997) Distinct sites of intracellular production of Alzheimer’s disease Aβ40/42 amyloid peptides.Nat. Med. 3, 1016–1020.

    PubMed  CAS  Google Scholar 

  • Higgins GA and H Jacobsen (2003) Transgenic mouse models of Alzheimer’s disease: phenotype and application.Behav. Pharm. 14, 419–428.

    CAS  Google Scholar 

  • Hou XE, K Lundmark and AB Dahlstrom (1998) Cellular reactions to axotomy in rat superior cervical ganglia includes apoptotic cell death.J. Neurocytol. 27, 441–451. Iwatsubo T, A Odaka, N Suzuki, H Mizuasawa, N Nukina and Y

    PubMed  CAS  Google Scholar 

  • Ihara (1994) Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43).Neuron 13, 45–53.

    PubMed  Google Scholar 

  • Janus C, MA Chishti and D Westaway (2000) Transgenic mouse models of Alzheimer’s disease.Biochim. Biophys. Acta 1502, 63–75.

    PubMed  CAS  Google Scholar 

  • Ji Y, Y Gong, W Gan, T Beach, DM Holtzman and T Wisniewski (2003) Apopolipoprotien E isoform-specific regulation of dendritic spine morphology in apoplipoprotein E transgenic mice and Alzheimer’s disease patients.Neuroscience 122, 305–315.

    PubMed  CAS  Google Scholar 

  • Johnson GVW and SM Jenkins (1996) Tau protein in normal and Alzheimer’s disease brain.Alzheimer’s Dis. Rev. 1, 38–54.

    CAS  Google Scholar 

  • Joseph J, B Shukitt-Hale, NA Denisova, A Martin, G Perry and MA Smith (2001) Copernicus revisited: amyloid beta in Alzheimer’s disease.Neurobiol. Aging 22, 131–146.

    PubMed  CAS  Google Scholar 

  • King CE, I Jacobs, TC Dickson and JC Vickers (1997) Physical damage to rat cortical axons mimics early Alzheimer’s neuronal pathology.NeuroReport 8, 1663–1665. King CE, PA Adlard, TC Dickson and JC Vickers (2000) Neuronal response to physical injury and its relationship to the pathology of Alzheimer’s disease.Clin. Exp. Pharm. Phys. 27, 548–552.

    Google Scholar 

  • King CE, AJ Canty and JC Vickers (2001) Alterations in neurofilaments associated with reactive brain changes and axonal sprouting following acute physical injury to the rat neocortex.Neuropathol. Appl. Neurobiol. 27, 115–126.

    PubMed  CAS  Google Scholar 

  • Kirkcaldie MT, TC Dickson, CE King, D Grasby, BM Riederer and JC Vickers (2002) Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex.J. Chem. Neuroanat. 24, 163–171.

    PubMed  CAS  Google Scholar 

  • Knowles RB, T Gomez-Isla, and BT Hyman (1998) Aβ associated neuropil changes: correlation with neuronal loss and dementia.J. Neuropathol. Exp. Neurol. 57, 1122–1130.

    PubMed  CAS  Google Scholar 

  • Knowles RB, J Chin, CT Ruff and BT Hyman (1999a) Demonstration of fluorescence resonance energy transfer of a close association between activated MAP kinase and neurofibrillary tangles: Implication for MAP kinase activation in Alzheimer disease.J. Neuropathol. Exp. Neurol. 58, 1090–1098.

    PubMed  CAS  Google Scholar 

  • Knowles RB, C Wyart, SV Buldyrev, L Cruz, B Urbanc, ME Hasselmo, HE Stanley and BT Hyman (1999b) Plaque-induced neuritic abnormalities: Implication for disruption of neural networks in Alzheimer’s disease.Proc. Natl. Acad. Sci. USA 96, 5374–5279.

    Google Scholar 

  • Lambert MP, AK Barlow, BA Chromy, C Edwards, R Freed, M Liosatos, TE Morgan, I Rozovsky, B Trommer, KL Viola, P Wals, C Zhang, CE Finch, GA Krafft and WL Klein (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins.Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    PubMed  CAS  Google Scholar 

  • Lanz TA, DB Carter and KM Merchant (2003) Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype.Neurobiol. Dis. 13, 246–253.

    PubMed  CAS  Google Scholar 

  • Lau L-F and MK Ahlijanian (2003) Role of cdk5 in the pathogenesis of Alzheimer’s disease.Neuro-signals 12, 209–214.

    PubMed  CAS  Google Scholar 

  • Le R, L Cruz, B Urbanc, RB Knowles, K Hsiao-Ashe, K Duff, MC Irizarry, HE Stanley and BT Hyman (2001) Plaque-induced abnormalities in neurite geometry in transgenic models of Alzheimer’s disease: implications for neural system disruption.J. Neuropathol. Exp. Neurol. 60, 753–758.

    PubMed  CAS  Google Scholar 

  • Li GL, M Farooque, A Holtz and Y Olsson (1996) Increased expression of growth-associated protein 43 immunoreactivity in axons following compression trauma to rat spinal cord.Acta Neuropathol. 92, 19–26.

    PubMed  CAS  Google Scholar 

  • Lippa CF, AM Saunders, TW Smith, JM Swearer, DA Drachman, B Ghetti, L Nee, D Pulaski-Salo, D Dickson, Y Robitaille, C Bergeron, B Crain, MD Benson, M Farlow, BT Hyman, SP George-Hyslop, AD Roses and DA Pollen (1996) Familial and sporadic Alzheimer’s disease: neuropathology cannot exclude a final common pathway.Neurology 46, 406–412.

    PubMed  CAS  Google Scholar 

  • Lombardo JA, EA Sterns, ME McLellan, ST Kajdasz, GA Hickey, BJ Bacskai and BT Hyman (2003) Amyloid-β antibody treatment leads to rapid normalization of plaque-induced neuritic alterations.J. Neurosci. 23, 10883–10879.

    Google Scholar 

  • Lorenzo A and BA Yanker (1994) β-Amyloid neurotoxicity requires fibril formation and is inhibited by Congo red.Proc. Natl. Acad. Sci. USA 91, 12243–12247.

    PubMed  CAS  Google Scholar 

  • Lue LF, L Brachova, WH Civin and J Rogers (1996) Inflammation, Aβ deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration.J. Neuropathol. Exp. Neurol. 55, 1083–1088.

    PubMed  CAS  Google Scholar 

  • Martin LJ, CA Pardo, LC Cork and DL Price (1994) Synaptic pathology and glial response to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex.Am. J. Pathol. 145, 1358–1381.

    PubMed  CAS  Google Scholar 

  • Masliah E, M Mallory, L Hansen, M Alford, T Albright, R DeTeresa, R Terry, J Baudier and T Saitoh (1991) Patterns of aberrant sprouting in Alzheimer’s disease. Neuron 6, 729–739. Masliah E, M Mallory, N Ge and T Saitoh (1992) Amyloid precursor protein is localized in growing neurites of neonatal rat brain.Brain Res. 593, 323–328.

    Google Scholar 

  • Masliah E, M Mallory, L Hansen, M Alford, R DeTeresa, R Terry, J Baudier and T Saitoh (1992) Localization of amyloid precursor protein in GAP43-immunoreactive aberrant sprouting neurites in Alzheimer’s disease.Brain Res. 574, 312–316.

    PubMed  CAS  Google Scholar 

  • Masliah E, M Mallory, L Hansen, M Alford, R DeTeresa and R Terry (1993) An antibody against phosphorylated neurofilaments identifies a subset of damaged association axons in Alzheimer’s disease.Am. J. Pathol. 142, 871–881.

    PubMed  CAS  Google Scholar 

  • McKee AC, KS Kosik and NW Kowall (1991) Neuritic pathology and dementia in Alzheimer’s disease.Ann. Neurol. 30, 156–165.

    PubMed  CAS  Google Scholar 

  • Meller D, UT Eysel and R Schmidt-Kastner (1994) Transient immunohistochemical labelling of rat retinal axons during Wallerian degeneration by a monoclonal antibody to neurofilaments.Brain Res. 648, 162–166.

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles.Neuron 24, 521–529.

    PubMed  CAS  Google Scholar 

  • Metsaars WP, J-J Hauw, ME Van Welsem and C Duyckaerts (2003) A grading system of Alzheimer’s disease lesions in neocortical areas.Neurobiol. Aging 24, 563–572.

    PubMed  Google Scholar 

  • Moechars D, I Dewachter, K Lorent, D Reversé, V Baekelandt, A Naidu, I Tesseur, K Spittaels, CV Haute, F Checler, E Godaux, B Cordell and F Van Leuven (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain.J. Biol. Chem. 274, 6483–6492.

    PubMed  CAS  Google Scholar 

  • Moolman DL, OV Vitolo, J-PG Vonsattel and ML Shelanski (2004) Dendrite and dendritic spine alterations in Alzheimer models.J. Neurocytol. 33, 377–387.

    PubMed  CAS  Google Scholar 

  • Morris JC, M Storandt, DW McKeel, EH Rubin, JL Price, EA Grant and L Berg (1996) Cerebral amyloid deposition and diffuse plaques in “normal” aging: evidence from presymptomatic and very mild Alzheimer’s disease.Neurology 46, 707–719.

    PubMed  CAS  Google Scholar 

  • Nakamura Y, R Hasimoto, Y Kashiwagi, Y Miyamae, K Shinosaki, T Nishikawa, H Hattori, T Kudo and M Takeda (1997) Abnormal distribution of neurofilament L in neurons with Alzheimer’s disease.Neurosci. Lett. 225, 201–204.

    PubMed  CAS  Google Scholar 

  • Noda-Saita K, K Terai, A Iwai, M Tsukamoto, Y Shitaka, S Kawabata, M Okada and T Yamaguchi (2004) Exclusive association and simultaneous appearance of congophilic plaques and AT8-positive dystrophic neurites in Tg2576 mice suggest a mechanism of senile plaque formation and progression of neuritic dystrophy in Alzheimer’s disease.Acta Neuropathol. (Berl.) 108, 435–442. Epub 2004 Sep. 14.

    Google Scholar 

  • Noble W, V Olm, K Takata, E Casey, M O, J Meyerson, K Gaynor, J LaFrancois, L Wang, T Kondo, P Davies, M Burns, Veeranna, R Nixon, D Dickson, Y Matsuoka, M Ahlijanian, L-F Lau and K Duff (2003) Cdk5 is a key factor in tau aggregation and tangle formationin vivo.Neuron 38, 555–565.

    PubMed  CAS  Google Scholar 

  • Onorato M, P Mulvihill, J Connolly, P Galloway, P Whitehouse and G Perry (1989) Alteration of neuritic cytoarchitecture in Alzheimer disease.Prog. Clin. Biol. Res. 317, 781–789.

    PubMed  CAS  Google Scholar 

  • Parnetti L, U Senin and P Mecocci (1997) Cognitive enhancement therapy for Alzheimer’s disease: the way forward.Drugs 53, 752–768.

    PubMed  CAS  Google Scholar 

  • Price JL and JC Morris (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease.Ann. Neurol. 45, 358–368.

    PubMed  CAS  Google Scholar 

  • Rosenfeld J, ME Dorman, JW Griffin, LA Sternberger, NH Sternberger and DL Price (1987) Distribution of neurofilament antigens after axonal injury.J. Neuropathol. Exp. Neurol. 46, 269–282.

    PubMed  CAS  Google Scholar 

  • Sahuquillo JP and MA Poca (2002) Diffuse axonal injury after head trauma. A review.Adv. Tech. Stand. Neurosurg. 27, 23–86.

    PubMed  CAS  Google Scholar 

  • Sandbrink R and K Beyreuther (1996) Unraveling the molecular pathway of Alzheimer’s disease: research about presenilins gathers momentum.Mol. Psychiatry 1, 438–444.

    PubMed  CAS  Google Scholar 

  • Schmitt AB, S Breuer, M Voell, F-W Schwaiger, C Spitzer, K Pech, GA Brook, J Noth, GW Kreutzberg and W Nacimiento (1999) GAP43 (B-50) and C-Jun are up-regulated in axotomized neurons of Clarke’s nucleus after spinal cord injury in the adult rat.Neurobiol. Dis. 6, 122–130.

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1996) Amyloid beta-protein and the genetics of Alzheimer’s disease.J. Biol. Chem. 271, 18295–18298.

    PubMed  CAS  Google Scholar 

  • Smith DH, K Uryu, KE Saatman, JQ Trojanowski and TK McIntosh (2003) Protein accumulation in traumatic brain injury.Neuromolecular Med. 4, 59–72.

    PubMed  CAS  Google Scholar 

  • Stern EA, BJ Bacskai, GA Hickey, FJ Attenello, JA Lombardo and BT Hyman (2004) Cortical synaptic integrationin vivo is disrupted by amyloid-β plaques.J. Neurosci. 24, 4535–4540.

    PubMed  CAS  Google Scholar 

  • Sturchler-Pierrat C, D Abramowsk, M Duke, K Wiederhold, C Mistl, S Rothacher, B Lederman, K Burki, P Frey, P Paganetti, C Waridel, M Calhoun, M Jucker, A Probst, M Staufenbiel and B Sommer (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology.Proc. Natl. Acad. Sci. USA 94, 13287–13292.

    PubMed  CAS  Google Scholar 

  • Su JH, BJ Cummings and CW Cotman (1996) Plaque biogenesis in brain aging and Alzheimer’s disease. I. Progressive changes in phosphorylation states of paired helical filaments and neurofilaments.Brain Res. 739, 79–87.

    PubMed  CAS  Google Scholar 

  • Su JH, BJ Cummings and CW Cotman (1998) Plaque biogenesis in brain aging and Alzheimer’s disease. II. Progressive transformation and developmental sequence of dystrophic neurites.Acta Neuropathol. (Berl.) 96, 463–471.

    CAS  Google Scholar 

  • Terry RD, E Masliah, SP Salmon, N Butters, R DeTeresa, R Hill, LA Hansen and R Katzman (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment.Ann. Neurol. 30, 572–580.

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ and VM Lee (1994) Paired helical filament tau in Alzheimer’s disease. The kinase connection.Am. J. Pathol. 144, 449–453.

    PubMed  CAS  Google Scholar 

  • Tsai J, J Grutzendler, K Duff and W-B Gan (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches.Nat. Neurosci. 7, 1181–1183. Epub 2001 Oct 10.

    PubMed  CAS  Google Scholar 

  • Tseng H-C, Y Zhou, Y Shen and L-H Tsai (2002) A survey of cdk5 activator p35 and p25 levels in Alzheimer’s disease brains.FEBS Lett. 523, 58–62.

    PubMed  CAS  Google Scholar 

  • van Leeuwen FW, JP Burbach and EM Hol (1998) Mutations in RNA: a first example of molecular misreading in Alzheimer’s disease.Trends Neurosci. 21, 331–335.

    PubMed  Google Scholar 

  • Vickers JC, D Chin, A-M Edwards, V Sampson, C Harper and J Morrison (1996) Dystrophic neurite formation associated with age-related b amyloid deposition in the neocortex: clues to the genesis of neurofibrillary pathology.Exp. Neurol. 141, 1–11.

    PubMed  CAS  Google Scholar 

  • Vickers JC (1997) A cellular mechanism for the neuronal changes underlying Alzheimer’s disease.Neuroscience 78, 629–639.

    PubMed  CAS  Google Scholar 

  • Vickers JC, TC Dickson, PA Adlard, HL Saunders, CE King and G McCormack (2000) The cause of neuronal degeneration in Alzheimer’s disease.Prog. Neurobiol. 60, 139–165.

    PubMed  CAS  Google Scholar 

  • Vincent I, G Jicha, M Rosado and DW Dickson (1997) Abberent expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons in Alzheimer’s disease brain.J. Neurosci. 17, 3588–3598.

    PubMed  CAS  Google Scholar 

  • Wang SS-S, A Becerra-Arteaga and TA Good (2002) Development of a novel diffusion-based method to estimate the size of the aggregated Aβ species responsible for neurotoxicity.Biotechnol. Bioeng. 80, 50–59.

    PubMed  CAS  Google Scholar 

  • Yamaguchi H, K Ishiguro, T Uchida, A Takashima, CA Lemere and K Imahori (1996) Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II.Acta Neuropathol. 92, 232–241.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey C. Dickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodhouse, A., West, A.K., Chuckowree, J.A. et al. Does β-amyloid plaque formation cause structural injury to neuronal processes?. neurotox res 7, 5–15 (2005). https://doi.org/10.1007/BF03033772

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033772

Keywords

Navigation