Skip to main content
Log in

Posttraumatic administration of pituitary adenylate cyclase activating polypeptide in central fluid percussion injury in rats

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Severalin vitro andin vivo experiments have demonstrated the neuroprotective effects of pituitary adenylate cyclase activating polypeptide (PACAP) in focal cerebral ischemia, Parkinson’s disease and traumatic brain injury (TBI). The aim of the present study was to analyze the effect of PACAP administration on diffuse axonal injury (DAI), an important contributor to morbidity and mortality associated with TBI, in a central fluid percussion (CFP) model of TBI. Rats were subjected to moderate (2 Atm) CFP injury. Thirty min after injury, 100 μg PACAP was administered intracerebroventricularly. DAI was assessed by immunohistochemical detection of β-amyloid precursor protein, indicating impaired axoplasmic transport, and RMO-14 antibody, representing foci of cytoskeletal alterations (neurofilament compaction), both considered classical markers of axonal damage. Analysis of damaged, immunoreactive axonal profiles revealed significant axonal protection in the PACAP-treated versus vehicletreated animals in the corticospinal tract, as far as traumatically induced disturbance of axoplasmic transport and cytoskeletal alteration were considered. Similarly to our former observations in an impact acceleration model of diffuse TBI, the present study demonstrated that PACAP also inhibits DAI in the CFP injury model. The finding indicates that PACAP and derivates can be considered potential candidates for further experimental studies, or purportedly for clinical trials in the therapy of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APP:

Amyloid precursor protein

CFP:

Central fluid percussion

CSpT:

Corticospinal tract

DAI:

Diffuse axonal injury; icv, intracerebroventricularly

MLF:

Medial longitudinal fascicle

PACAP:

Pituitary adenylate cyclase activating polypeptide

TBI:

Traumatic brain injury

References

  • Atlasz T, N Babai, P Kiss, D Reglodi, A Tamas, K Szabadfi, G Toth, O Hegyi, A Lubics and R Gabriel (2007) Pituitary adenylate cyclase activating polypeptide is protective in bilateral carotid occlusion-induced retinal lesion in rats.Gen. Comp. Endocrinol. 153, 108–114.

    Article  PubMed  CAS  Google Scholar 

  • Aubert N, A Falluel-Morel, D Vaudry, X Xifro, J Rodriguez-Alvarez, C Fisch, S de Jouffrey, JF Lebigot, A Fournier, H Vaudry and BJ Gonzalez (2006) PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase- dependent pathway: involvement of c-fos in PACAP-induced Bcl-2 expression.J. Neurochem. 99, 1237–1250.

    Article  PubMed  CAS  Google Scholar 

  • Babai N, T Atlasz, A Tamás, D Reglodi, P Kiss and R Gábriel (2005) Degree of damage compensation by various PACAP treatments in monosodium glutamate-induced retina degeneration.Neurotox. Res. 8, 227–233.

    PubMed  CAS  Google Scholar 

  • Beal MF, T Palomo, RM Kostrzewa and T Archer (2000) Neuroprotective and neurorestorative strategies for neuronal injury.Neurotox. Res. 2, 71–84.

    PubMed  CAS  Google Scholar 

  • Blumbergs PC, G Scott, J Manavis, H Wainwright, DA Simpson and AJ McLean (1994) Staining of amyloid precursor protein to study axonal damage in mild head injury.Lancet 344, 1055–1056.

    Article  PubMed  CAS  Google Scholar 

  • Bramlett HM and WD Dietrich (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences.J. Cereb. Blood Flow Metab. 24, 133–150.

    Article  PubMed  Google Scholar 

  • Bramlett HM, S Kraydieh, EJ Green and WD Dietrich (1997) Temporal and regional patterns of axonal damage following traumatic brain injury: a β-amyloid precursor protein immunocytochemical study in rats.J. Neuropathol. Exp. Neurol. 56, 1132–1141.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman DE (2007) Neuroprotection: a comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide.Peptides 28, 1720–1726.

    Article  PubMed  CAS  Google Scholar 

  • Buki A, H Koizumi and JT Povlishock (1999a) Moderate post-traumatic hypothermia decreases early calpain-mediated proteolysis and concomitant cytoskeletal compromise in traumatic axonal injury.Exp. Neurol. 159, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Buki A, DO Okonkwo and JT Povlishock (1999b) Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury.J. Neurotrauma 16, 511–521.

    Article  PubMed  CAS  Google Scholar 

  • Buki A, R Siman, JQ Trojanowski and JT Povlishock (1999c) The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury.J. Neuropathol. Exp. Neurol. 58, 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Buki A, DO Okonkwo, KK Wang and JT Povlishock (2000) Cytochromec release and caspase activation in traumatic axonal injury.J. Neurosci. 20, 2825–2834.

    PubMed  CAS  Google Scholar 

  • Buki A, O Farkas, T Doczi and JT Povlishock (2003) Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury.J. Neurotrauma 20, 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Cernak I, S Chapman, G Hamlin and R Vink (2002) Temporal characterisation of pro- and anti-apoptotic mechanisms following diffuse traumatic brain injury in rats.J. Clin. Neurosci. 9, 565–572.

    Article  PubMed  Google Scholar 

  • Chen WH and SF Tzeng (2005) Pituitary adenylate cyclase activating polypeptide prevents cell death in the spinal cord with traumatic injury.Neurosci. Lett. 384, 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Dejda A, P Sokolowska and JZ Nowak (2005) Neuroprotective potential of three neuropeptides PACAP, VIP and PHI.Pharmacol. Rep. 57, 307–320.

    PubMed  CAS  Google Scholar 

  • Delgado M, J Leceta and D Ganea (2003) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia.J. Leukoc. Biol. 73, 155–164.

    Article  PubMed  CAS  Google Scholar 

  • De Yebenes JG and MA Mena (2000) Neurotrophic factors in neurodegenerative disorders: model of Parkinson’s disease.Neurotox. Res. 2, 115–137.

    PubMed  Google Scholar 

  • Dixon CE, BG Lyeth, JT Povlishock, RL Findling, RJ Hamm, A Marmarou, HF Young and RL Hayes (1987) A fluid percussion model of experimental brain injury in the rat.J. Neurosurg. 67, 110–119.

    PubMed  CAS  Google Scholar 

  • Doberer D, M Gschwandtner, W Mosgoeller, C Bieglmayer, H Heinzl and V Petkov (2007) Pulmonary and systemic effects of inhaled PACAP38 in healthy male subjects.Eur. J. Clin. Invest. 37, 665–672.

    Article  PubMed  CAS  Google Scholar 

  • Dohi K, H Mizushima, S Nakajo, H Ohtaki, S Matsunaga, T Aruga and S Shioda (2002) Pituitary adenylate cyclase- activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways.Regul. Pept. 109, 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Farkas O, A Tamas, A Zsombok, D Reglodi, J Pal, A Buki, I Lengvari, JT Povlishock and T Doczi (2004) Effects of pituitary adenylate cyclase activating polypeptide in a rat model of traumatic brain injury.Regul. Pept. 123, 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Farkas O, B Polgar, J Szekeres-Bartho, T Doczi, JT Povlishock and A Buki (2005) Spectrin breakdown products in the cerebrospinal fluid in severe head injury — preliminary observations.Acta Neurochir. (Wien.) 147, 855–861.

    Article  CAS  Google Scholar 

  • Feng SQ, XH Kong, SF Guo, P Wang, L Li, JH Zhong and XF Zhou (2005) Treatment of spinal cord injury with co-grafts of genetically modified Schwann cells and fetal spinal cord cell suspension in the rat.Neurotox. Res. 7, 169–177.

    PubMed  CAS  Google Scholar 

  • Foda MA and A Marmarou (1994) A new model of diffuse brain injury in rats. Part II. Morphological characterization.J. Neurosurg. 80, 301–313.

    PubMed  CAS  Google Scholar 

  • Gasz B, B Racz, E Roth, B Borsiczky, A Ferencz, A Tamas, B Cserepes, A Lubics, F Gallyas Jr, G Toth, I Lengvari and D Reglodi (2006) Pituitary adenylate cyclase activating polypeptide protects cardiomyocytes against oxidative stress- induced apoptosis.Peptides 27, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Gentleman SM, MJ Nash, CJ Sweeting, DI Graham and GW Roberts (1993) β-Amyloid precursor protein (β-APP) as a marker for axonal injury after head injury.Neurosci. Lett. 160, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, KL Double, MB Youdim and P Riederer (2000) Strategies for the protection of dopaminergic neurons against neurotoxicity.Neurotox. Res. 2, 99–114.

    PubMed  CAS  Google Scholar 

  • Ghirnikar RS, YL Lee and LF Eng (1998) Inflammation in traumatic brain injury: role of cytokines and chemokines.Neurochem. Res. 23, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Katahira M, K Yone, Y Arishima, T Nagamine, S Komiya and S Iwata (2003) The neuroprotective efffects of PACAP on spinal cord injury (SCI) in rats.Regul. Pept. 115, 49.

    Google Scholar 

  • Kim WK, Y Kan, D Ganea, RP Hart, I Gozes and GM Jonakait (2000) Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor- α production in injured spinal cord and in activated microglia via a cAMP-dependent pathway.J. Neurosci. 20, 3622–3630.

    PubMed  CAS  Google Scholar 

  • Li M, JL Maderdrut, JJ Lertora and V Batuman (2007) Intravenous infusion of pituitary adenylate cyclase activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney injury: a case study.Peptides 28, 1891–1895.

    Article  PubMed  CAS  Google Scholar 

  • Marmarou CR, SA Walker, CL Davis and JT Povlishock (2005) Quantitative analysis of the relationship between intra- axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury.J. Neurotrauma 22, 1066–1080.

    Article  PubMed  Google Scholar 

  • McIntosh TK, L Noble, B Andrews and AI Faden (1987) Traumatic brain injury in the rat: characterization of a midline fluid-percussion model.Cent. Nerv. Syst. Trauma 4, 119–134.

    PubMed  CAS  Google Scholar 

  • Miyata A, A Arimura, RR Dahl, N Minamino, A Uehara, L Jiang, MD Culler and DH Coy (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells.Biochem. Biophys. Res. Commun. 164, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Okonkwo DO and JT Povlishock (1999) An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury.J. Cereb. Blood Flow Metab. 19, 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Okonkwo DO, EH Pettus, J Moroi and JT Povlishock (1998) Alteration of the neurofilament sidearm and its relation to neurofilament compaction occurring with traumatic axonal injury.Brain Res. 784, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT and EH Pettus (1996) Traumatically induced axonal damage: evidence for enduring changes in axolemmal permeability with associated cytoskeletal change.Acta Neurochir. Suppl. (Wien.) 66, 81–86.

    CAS  Google Scholar 

  • Povlishock JT, A Marmarou, T McIntosh, JQ Trojanowski and J Moroi (1997) Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration.J. Neuropathol. Exp. Neurol. 56, 347–359.

    Article  PubMed  CAS  Google Scholar 

  • Racz B, D Reglodi, P Kiss, N Babai, T Atlasz, R Gabriel, A Lubics, F Gallyas Jr, B Gasz, G Toth, E Roth, O Hegyi, I Lengvari and A Tamas (2006a)In vivo neuroprotection by PACAP in excitotoxic retinal injury: review of effects on retinal morphology and apoptotic signal transduction.Int. J. Neuroprot. Neurodeg. 2, 80–85.

    Google Scholar 

  • Racz B, F Gallyas Jr, P Kiss, G Toth, O Hegyi, B Gasz, B Borsiczky, A Ferencz, E Roth, A Tamas, I Lengvari, A Lubics and D Reglodi (2006b). The neuroprotective effects of PACAP in monosodium glutamate-induced retinal lesion involves inhibition of proapoptotic signaling pathways.Regul. Pept. 137, 20–26.

    Article  PubMed  CAS  Google Scholar 

  • Racz B, F Gallyas Jr, P Kiss, A Tamas, A Lubics, I Lengvari, E Roth, G Toth, O Hegyi, ZS Verzar, CS Fabricsek and D Reglodi (2007) Effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the PKA-Bad-14-3-3 signaling pathway in glutamate-induced retinal injury in neonatal rats.Neurotox. Res. 12, 95–104.

    PubMed  CAS  Google Scholar 

  • Ravni A, S Bourgault, A Lebon, P Chan, L Galas, A Fournier, H Vaudry, B Gonzalez, LE Eiden and D Vaudry (2006) The neurotrophic effects of PACAP in PC 12 cells: control by multiple transduction pathways.J. Neurochem. 98, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Ray SK, CE Dixon and NL Banik (2002) Molecular mechanisms in the pathogenesis of traumatic brain injury.Histol. Histopathol. 17, 1137–1152.

    PubMed  CAS  Google Scholar 

  • Reglodi D, A Tamas, A Somogyvari-Vigh, Z Szanto, E Kertes, L Lenard, A Arimura and I Lengvari (2002) Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia.Peptides 23, 2227–2234.

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, A Tamas, A Lubics, L Szalontay and I Lengvari (2004) Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats.Regul. Pept. 123, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, A Tamas, A Lubics, L Szalontay, A Zsombok, O Farkas, A Buki, T Doczi and I Lengvari (2005) Recent results on the neuroprotective effects of PACAP in rat models of focal cerebral ischemia, Parkinson’s disease and traumatic brain injury.Neurotox. Res. 8, 317.

    Google Scholar 

  • Reglodi D, A Lubics, P Kiss, I Lengvari, B Gaszner, G Toth, O Hegyi and A Tamas (2006) Effect of PACAP in 6-OHDA- induced injury of the substantia nigra in intact young and ovariectomized female rats.Neuropeptides 40, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Segura-Aguilar J and RM Kostrzewa (2006) Neurotoxins and neurotoxicity mechanisms. An overview.Neurotox. Res. 10, 263–285.

    Article  PubMed  CAS  Google Scholar 

  • Shioda S, H Ozawa, K Dohi, H Mizushima, K Matsumoto, S Nakajo, A Takaki, CJ Zhou, Y Nakai and A Arimura (1998) PACAP protects hippocampal neurons against apoptosis: involvement of JNK/SAPK signaling pathway.Ann. NY Acad. Sci. 865, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Shioda S, H Ohtaki, T Nakamachi, K Dohi, J Watanabe, S Nakajo, S Arata, S Kitamura, H Okuda, F Takenoya and Y Kitamura (2006) Pleiotropic functions of PACAP in the CNS. Neuroprotection and neurodevelopment.Ann. NY Acad. Sci. 1070, 550–560.

    Article  PubMed  CAS  Google Scholar 

  • Skoglosa Y, A Lewen, N Takei, L Hillered and D Lindholm (1999) Regulation of pituitary adenylate cyclase activating polypeptide and its receptor type 1 after traumatic brain injury: comparison with brain-derived neurotrophic factor and the induction of neuronal cell death.Neuroscience 90, 235–247.

    Article  PubMed  CAS  Google Scholar 

  • Somogyvari-Vigh A and D Reglodi (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide.Review. Curr. Pharm. Des. 10, 2861–2889.

    Article  CAS  Google Scholar 

  • Stone JR, SA Walker and JT Povlishock (1999) The visualization of a new class of traumatically injured axons through the use of a modified method of microwave antigen retrieval.Acta Neuropathol. (Berl.) 97, 335–345.

    Article  CAS  Google Scholar 

  • Stone JR, RH Singleton and JT Povlishock (2000) Antibodies to the C-terminus of the beta-amyloid precursor protein (APP): a site specific marker for the detection of traumatic axonal injury.Brain Res. 871, 288–302.

    Article  PubMed  CAS  Google Scholar 

  • Stone JR, RH Singleton and JT Povlishock (2001) Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons.Exp. Neurol. 172, 320–331.

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi A, K Funaji, J Nakatsubo, M Fukuchi, T Tsuchiya and M Tsuda (2003) Inactivation of aconitase during the apoptosis of mouse cerebellar granule neurons induced by a deprivation of membrane depolarization.J. Neurosci. Res. 71, 504–515.

    Article  PubMed  CAS  Google Scholar 

  • Tamas A, A Lubics, I Lengvari and D Reglodi (2006a) Protective effects of PACAP in excitotoxic striatal lesion.Ann. NY Acad. Sci. 1070, 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Tamas A, A Zsombok, O Farkas, D Reglodi, J Pal, A Buki, I Lengvari, JT Povlishock and T Doczi (2006b) Postinjury administration of pituitary adenylate cyclase activating polypeptide (PACAP) attenuates traumatically induced axonal injury in rats.J. Neurotrauma 23, 686–695.

    Article  PubMed  Google Scholar 

  • van Landeghem FK, T Weiss, M Oehmichen and A von Deimling (2007) Cellular localization of pituitary adenylate cyclase activating peptide (PACAP) following traumatic brain injury in humans.Acta Neuropathol. 113, 683–693.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Büki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kóvesdi, E., Tamás, A., Reglodi, D. et al. Posttraumatic administration of pituitary adenylate cyclase activating polypeptide in central fluid percussion injury in rats. neurotox res 13, 71–78 (2008). https://doi.org/10.1007/BF03033558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033558

Keywords

Navigation