Abstract
Oxidative imbalance is a prominent feature in Alzheimer’s disease and ageing. Increased levels of reactive oxygen species (ROS) can result in disordered cellular metabolism due to lipid peroxidation, protein-cross linking, DNA damage and the depletion of nicotinamide adenine dinucleotide (NAD+). NAD+ is a ubiquitous pyridine nucleotide that plays an essential role in important biological reactions, from ATP production and secondary messenger signalling, to transcriptional regulation and DNA repair. Chronic oxidative stress may be associated with NAD+ depletion and a subsequent decrease in metabolic regulation and cell viability. Hence, therapies targeted toward maintaining intracellular NAD+ pools may prove efficacious in the protection of age-dependent cellular damage, in general, and neurodegeneration in chronic central nervous system inflammatory diseases such as Alzheimer’s disease, in particular.
Similar content being viewed by others
References
Alano CC, W Ying and RA Swanson (2004) Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition.J. Biol. Chem. 279, 18895–18902.
Alvarez-Gonzalez R, H Zentgraf, M Frey and H Mendoza-Alvarez (2006) Functional interactions of PARP-1 with p53, In:Poly(ADP-Ribosyl)ation (Burkle A, Ed.) (Springer-Landes Bioscience:New York, NY).
Anderson RM, KJ Bitterman, JG Wood, O Medvedik, H Cohen, SS Lin, JK Manchester, JI Gordon and DA Sinclair (2002) Manipulation of a nuclear NADP salvage pathway delays ageing without altering steady-state NADP levels.J. Biol. Chem. 277, 18881–18890.
Arraki T, Y Sasaki and J Milbrandt (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration.Science 305, 1010–1013.
Bedalov A and JA Simon (2004) NAD to the rescue.Science 305, 954–955.
Behan WMH, M McDonald, LG Darlington and TW Stone (1999) Oxidative stress as a mechanism for quinolinic acidinduced hippocampal damage: protection by melatonin and deprenyl.Brit. J. Pharmacol. 128, 1754–1760.
Behl C, JB Davis, R Lesley and D Schubert (1994) Hydrogen peroxide mediates amyloid-β protein toxicity.Cell 77, 817–827.
Belenky P, KL Bogan and C Brenner (2007) NAD+ metabolism in health and disease.Trends Biochem. Sci. 32(1):12–19.
Beneke S, J Diefenbach and A Burkle (2004) Poly(ADPribosyl) ation inhibitors: promising drug candidates for a wide variety of pathophysiologic conditions.Int. J. Cancer 111, 813–818.
Berg JM, JL Tymoczko and L Stryer (2007)Biochemistry, 6th Edition (Freeman:New York, NY).
Berger F, MH Ramirez-Hernandez and M Ziegler (2004) The new life of a centenarian: signalling functions of NAD(P).Trends Biochem. Sci. 29, 111–118.
Berger SJ, DC Sudar and NA Berger (1986) Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of Poly(ADP-Ribose) polymerase.Biochem. Biophys. Res. Commun. 134, 227–232.
Blanc EM, M Toborek, RJ Mark, B Hennig and MP Mattson (1997) Amyloid-β-peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells.J. Neurochem. 68, 1870–1881.
Bouchard VJ, M Rouleau and GG Poirier (2003) PARP-1, a determinant of cell survival in response to DNA damage.Exp. Hematology 31, 446–454.
Bordone L, D Cohen, A Robinson, MC Motta, E van Veen, A Czopik, AD Steele, H Crowe, S Marmor, J Luo, W Gu and L Guarente (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction.Aging Cell 6(6) 759–767. Sep 17, 20078 [Epub ahead of print].
Brunet A, LB Sweeney, JF Sturgill, KF Chua, PL Greer, Y Lin, H Tran, SE Ross, R Mostoslavsky, HY Cohen, LS Hu, HL Cheng, MP Jedrychowski, SP Gygi, DA Sinclair, FW Alt and ME Greenberg (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.Science 303, 2011–2015.
Butterfield DA (1997) β-Amyloid associated free radical oxidative stress and neurotoxicity implications for Alzheimer’s disease.Chem. Res. Toxicol. 10, 495–506.
Cherny RA, CS Atwood, ME Xilinas, D Gray, W Jones, C McLean, K Barnham, I Volitakis, F Fraser and Y Kim (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice.Neuron 30, 665–676.
Citron M (2004) Strategies for disease modification in Alzheimer’s disease.Nat. Rev. Neurosci. 5, 677–685.
Culmsee C, Z Zhu, QS Yu, SL Chan, S Camandola, Z Guo, NH Greig and MP Mattson (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid-β-peptide.J. Neurochem. 77, 220–228.
de la Monte SM, YK Sohn, N Ganju and JR Wands (1998) p53- and CD95-associated apoptosis in neurodegenerative diseases.Lab. Invest. 78, 401–411.
de Murcia JM, C Niedergang, C Trucco, M Ricoul, B Dutrillaux, M Mark, FJ Oliver, M Masson, A Dierich, M LeMeur, C Walztinger, P Chambon and G De Murcia (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells.Proc. Natl. Acad. Sci. USA 94, 7303–7307.
di Lisa F and M Ziegler (2001) Pathophysiological relevance of mitochondria in NAD+ metabolism.FEBS Lett. 492, 4–8.
Doraiswamy PM and AE Finefrock (2004) Metals in our minds: therapeutic implications for neurodegenerative disorders.Lancet Neurol. 3, 431–434.
Doxsey S (2001) Reevaluating centrosome function.Nat. Rev. Molec. Cell. Biol. 2, 688–689.
Erdélyi K, E Bakondi, P Gergely, C Szabó and L Virág (2005) Pathophysiologic role of oxidative stress-induced poly(ADPribose) polymerase-1 activation: focus on cell death and transcriptional regulation.Cell. Mol. Life Sci. 62(7-8), 751–759.
Evans DA, H Funkenstein and MS Albert (1989) Prevalence of Alzheimer’s disease in a community population of older persons.JAMA 262, 2551–2556.
Ferri CP, M Prince, C Brayne, C Brodaty, L Fratiglioni, M Ganguli, K Hall, K Hasegawa, H Hendrie and Y Huang (2006) Global prevalence of dementia: a Delphi consensus study.Lancet 366, 2112–2117.
Finkbeiner S and AM Cuero (2006) Disease modifying pathways in neurodegeneration.J. Neurosci. 26, 10349–10357.
Floyd RA and K Hensley (2002) Oxidative stress in brain ageing: implications for therapeutics of neurodegenerative diseases.Neurobiol. Ageing 23, 795–807.
Furukawa A, S Tada-Oikawa and S Kawanishi (2007) H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion.Cell. Physiol. Biochem. 20, 45–54.
Gibson GE, V Haroutunian, H Zhang, LC Park, Q Shi, M Lesser, RC Mohs, RK Sheu and JP Blass (2000) Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype.Ann. Neurol. 48, 1594–1601.
Glenner GG and CW Wong (1984) Alzheimer’s disease: initial report of the purification and characterisation of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun. 120, 885–890.
Grant RS and V Kapoor (1998) Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates.J. Neurochem. 70, 1759–1763.
Gravey RW, JM Talent, Y Kang and CC Conrad (1999) Reactive oxygen species: the unavoidable environmental insult?Mutat. Res. 428, 17–22.
Grozinger CM and SL Schreiber (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors.Chem. Biol. 9, 3–16.
Guillemin GJ and BJ Brew (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease.Red. Rep. 7, 199–206.
Guillemin GJ, GA Smythe, LA Veas, O Takikawa and BJ Brew (2003) Aβ1–42 induces production of quinolinic acid by human macrophages and microglia.Neuroreport 14, 2311–2315.
Guillemin GJ, BJ Brew, CE Noona, O Takikawa and KM Cullen (2005) Indoleamine, 2,3 dioxygenase and quinolinic acid immunoreactivity in the Alzheimer’s disease hippocampus.Neuropath. Appl. Neurobiol. 31, 395–404.
Guillemin GJ, BJ Brew, CE Noonan, TG Knight and KM Cullen (2007) Mass spectrometric detection of quinolinic acid in micro dissected Alzheimer disease plaques.Int. Congr. Series [Epub ahead of print]
Halliwell B (1992) Oxygen radicals as key mediators in neurological disease: fact or fiction?Ann. Neurol. 32, S10-S15.
Harris ME, K Hensley and DA Butterfield (1995) Direct evidence of oxidative injury produced by Alzheimer’s β-amyloid peptide (1–40) in cultured hippocampal neurons.Exp. Neurol. 131, 193–200.
Heyes MP (1993) Metabolism and neuropathologic significance of quinolinic acid and kynureninic acid.Biochem. Soc. Transm. 21, 83–89.
Horwood N and DC Davies (1994) Immunolabelling of hippocampal microvessel glucose transporter protein is reduced in Alzheimer’s disease.Virchows Arch. 425, 69–71.
Howitz KT, KJ Bitterman and HY Cohen (2003) Small molecule activators of sirtuins extendSaccaromyces cerevisiae lifespan.Nature 425, 191–196.
Huang X, CS Atwood and MA Hartshorn (1999) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction.Biochemistry 38, 7609–7616.
Jagtap P and C Szabo (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors.Nat. Rev. Drug Dicov. 4, 421–440.
Jayasena T, RS Grant, N Keerthisinghe, I Solaja and GA Smythe (2007) Membrane permeability of redox active metal chelators: an important element in reducing hydroxyl radical induced NAD+ depletion in neuronal cells.Neurosci. Res. 57, 454–461.
Kerr SJ, PF Armati and BJ Brew (1995) Neurocytotoxicity of quinolinic acid in human brain cultures.J. Neurovirol. 1, 249–253.
Kerr SJ, PJ Armati, GJ Guillemin and BJ Brew (1998) Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex.AIDS 12, 355–363.
Kim HS, CH Park, SH Cha, J Lee, S Lee, Y Kim, JC Rah, SJ Jeong and YH Suh (2000) Carboxyl-terminal fragment of Alzheimer’s APP destabilises calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity.FASEB J. 14, 1508–1517.
Kontos HA (1989) Oxygen radicals in CNS damage.Chemico- Biol. Int. 533, 315–320.
Lee HC (2001) Physiologic functions of cyclic ADP-ribose and NAADP as calcium messengers.Ann. Rev. Pharmacol. Toxicol. 41, 317–345.
Lin SJ and L Guarente (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease.Curr. Opin. Cell. Biol. 15, 241–246.
Lin T and MS Yang (2007) Benzo[a]pyrene induced necrosis in the HepG2 cells via PARP-1 activation and NAD+ depletion.Toxicology doi:10.1016/j.tox.2007.12.020 Dec 31. 8 Feb. 2008 [Epub ahead of print]
Liu G, W Huang, R Moir CR Vanderburg, B Lai, Z Peng, RE Tanzi, JT Rogers and X Huang (2006) Metal exposure and Alzheimer’s pathogenesis.J. Struct. Biol. 155, 45–51.
Love S, R Barber and GK Wilcock (1999) Increased poly(ADPribosyl) ation of nuclear proteins in Alzheimer’s disease.Brain 122, 247–253.
Luo J, A Niokolaev, S Imai, D Chen, F Su, A Shiloh, L Guarante and W Gu (2001) Negative control of p53 by Sir2α promotes cell Ssurvival under stress.Cell 107, 137–148.
Maccioni RB, JP Munoz and L Barbeito (2001) The molecular basis of Alzheimer’s disease and other neurodegenerative disorders.Arch. Med. Res. 32, 367–381.
Malanga M and F Althaus (2005) The role of poly(ADPribose) in the DNA damage signaling network.Biochem. Cell. Biol. 83(3), 354–364.
Malanga M, J Pleschke, HE Kleczkowska and FR Althaus (1998) Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions.J. Biol. Chem. 273, 11839–11848.
Maldonado PD, ME Chanez-Cardenas, D Barrera, J Villeda-Hernández, A Santamaría and J Pedraza-Chaverrí (2007) Poly(ADP-ribose) polymerase-1 is involved in the neuronal death induced by quinolinic acid in rats.Neurosci. Lett. 425, 28–33.
Martin RN, CW Chan, G Veurink, S Laws, K Croft and AM Dharmarajan (1999) β-Amyloid and oxidative stress in the pathogenesis of Alzheimer’s disease, In:Antioxidants in Human Health and Disease (Basu TK, NJ Temple and ML Garg, Eds.) (CABI Publishing:Oxford, UK).
Masters CL, G Simms, NA Weinman, G Multhaup, BL McDonald and K Beyreuther (1985) Amyloid plaque core protein in Alzheimer’s disease and Down syndrome.Proc. Natl. Acad. Sci. USA 82, 4245–4249.
Mates JM (2000) Effects of antioxidant enzymes in molecular control of reactive oxygen species toxicology.Toxicol. 153, 83–104.
Mattson MP (2004) Pathway towards and away from Alzheimer’s disease.Nature 430, 630–639.
Meyer RG, ML Meyer-Ficca, EL Jacobsen and MK Jacobsen (2006) Enzymes in poly(ADP-Ribose) metabolism, In:Poly(ADP-Ribosyl)ation (Burkle A, Ed.) (Springer-Landes Bioscience:New York, NY).
Miquel MG (1992) The rate of DNA damage and ageing, In:Free Radicals in Ageing (Emerit I,and C Button, Eds.) (Birhauser Verlag:Basel, Switzerland).
Miranda S, C Opaza, LF Arrendo, FJ Muñoz, F Ruiz, F Leighton and NC Inestrosa (2000) The role of oxidative stress in the toxicity induced by amyloid-β-peptide in Alzheimer’s disease.Prog. Neurobiol. 62, 633–648.
Miwa M, M Kanai, M Uchida, K Uchida and S Hanai (2006) Roles of poly(ADP-ribose) metabolism in the regulation of centrosome duplication and in the maintenance of neuronal integrity, In:Poly(ADP-Ribosyl)ation (Burkle A, Ed.) (Springer-Landes Bioscience:New York, NY).
Motta MC, N Divecha, M Lemieux, C Kamel, D Chen, W Gu, Y Bultsma, M McBurney and L Guarente (2004) Mammalian SIRT1 represses forkhead transcription factors.Cell 116, 551–563.
Nunomura A, G Perry, MA Papolla, R Wade, K Hirai, S Chiba and MA Smith (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease.J. Neurosci. 19, 1959–1964.
Oddo S, A Caccamo, LM Tran, MP Lambert, CG Glabe, WL Klein and FM LaFerla (2006) Temporal profile of amyloid-β (Aβ) oligomerization in anin vivo model of Alzheimer disease: a link between Aβ and tau pathology.J. Biol. Chem. 281, 1599–1604.
Ogino K and DH Wang (2007) Biomarkers of oxidative/ nitrosative stress: an approach to disease prevention.Acta Med. Okayama 61, 181–189.
Ozcankaya R and N Delibas (2002) Malondialdehyde, super-oxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer’s disease: crosssectional study.Croat. Med. J. 43, 28–32.
Pacher P and C Szabó (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors.Cardiovasc. Drug Rev. 25 (3), 235–260.
Pallàs M, E Verdaguer, M Tajes, J Gutierrez-Cuesta and A Camins (2008) Modulation of sirtuins: new targets for antiageing.Recent Patents CNS Drug Discov. 3(1), 61–69.
Parihar MS and GJ Brewer (2007) Mitoenergetic failure in Alzheimer disease.Am. J. Cell. Physiol. 292, 8–23.
Parker J (Eds) (2004)The Encyclopedic Atlas of the Human Body (The Five Mile Pres:Vic. Australia).
Pillai JB, A Isbatan, SI Imai and MP Gupta (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sirt2α deacetylase activity.J. Biol. Chem. 280, 43121–43130.
Porcu M and A Chiarugi (2005) The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension.Trends Pharmacol. Sci. 26, 94–103.
Rafaeloff-Phail R, L Ding, L Conner, WK Yeh, D McClure, H Guo, K Emerson and H Brooks (2004) Biochemical regulation of mammalian AMP-activated protein kinase activity by NAD and NADH.J. Biol. Chem. 17, 52934–52939.
Raff MC, AV Whitemore and JT Finn (2002) Axonal selfdestruction and neurodegeneration.Science 296, 868–871.
Regland B, W Lehman, I Abedini, K Blennow, M Jonsson, I Karlsson, M Sjögren, A Wallin, ME Xilinas and CG Gottfries (2001) Treatment of Alzheimer’s disease with clioquinol.Dement. Geriatr. Cogn. Disord. 12, 408–414.
Retz W, W Gsell, L Munch, M Rosler and P Riederer (1998) Free radicals in Alzheimer’s disease.J. Neural Transm. Suppl.54, 221–236.
Rios C and A Santamaria (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates.Neurochem. Res. 16, 1139–1143.
Ruscetti T, BE Lehnert, J Halbrook, HH Trong, MF Hoekstra, DJ Chen and SR Peterson (1998) Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase.J. Biol. Chem. 273, 14461–14467.
Santamaria A, D Santamaria, M Diaz-Munoz, V Espinoza-González and C Ríos (1997) Effects ofN-omega-nitro-Larginine and L-arginine on quinolinic acid induced lipid peroxidation.Toxicol. Lett. 93, 117–124.
Sauve AA, C Wolberger, VL Schramm and JD Boeke (2006) The biochemistry of sirtuins.Annu. Rev. Biochem. 75, 435–465.
Serra JA, RO Dominguez, ES de Lustig, EM Guareschi, AL Famulari, EL Bartolome and ER Marschoff (2001) Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients.J. Neural Transm. 108, 1135–1148.
Skoog I, L Nilsoon and B Palmertz (1993) A population based study of dementia in 85 year-olds.N. Engl. J. Med. 328, 153–158.
Smith MA, PL Harris, LM Sayre and G Perry (1997) Iron accumulation in Alzheimer’s disease is a source of redox generated free radicals.Proc. Natl. Acad. Sci. USA 94, 9866–9868.
Stone TW (2001) Endogenous neurotoxins from tryptophan.Toxicon 39, 67–73.
Suh YH and F Checler (2002) Amyloid precusor protein, presenilins, and ±-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease.Pharmacol. Rev. 54, 469–525.
Tjernberg LO, DJ Callaway, A Tjernberg, S Hahne, C Lilliehook, L Terenius, J Thyberg and C Nordstedt (1999) A molecular model of Alzheimer’ amyloid-² peptide fibril formation.J. Biol. Chem. 274, 12619–12625.
van der Veer E, C Ho, C O’Neil, N Barbosa, R Scott, S Cregan and JG Pickering (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase.Am. Soc. Biochem. Mol. Biol. [Epub].
Varadarajan S (2000) Alzheimer’s amyloid ²-peptide associated free radical oxidative stress and neurotoxicity.J. Struct. Biol. 130, 184–208.
Vaziri H, SK Dessain, E Ng Eaton, SI Imai, RA Frye, TK Pandita, L Guarente and RA Weinberg (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.Cell 107, 149–159.
Wang H, M Shimoji, SW Yu, TM Dawson and VL Dawson (2003) Apoptosis inducing factor and PARP mediated injury in the MPTP mouse model of Parkinson’s disease.Ann. NY Acad. Sci. 991, 132–139.
Whitacre CM, H Hashimoto, ML Tsai, S Chatterjee, SJ Berger and NA Berger (1995) Involvement of NAD+ poly(ADP-ribose) metabolism in p53 regulation and its consequences.Cancer Res. 55, 3697–3701.
Wolozin B and N Golts (2002) Iron and Parkinson’s disease.Neuroscientist 8, 22–32.
Yang T and AA Sauve (2005) NAD+ metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity.AAPS J. 8, E632-E643.
Yeung F, JE Hoberg, CS Ramsey, MD Keller, DR Jones, RA Frye and MW Mayo (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase.EMBO J. 23, 2369–2380.
Ying W (2007) NAD+ and NADH in neuronal death.J. Neuroimmune. Pharmacol. 2, 270–275.
Younkin SG (1995) Evidence that A²42 is the real culprit in Alzheimer’s disease.Ann. Neurol. 37, 287–288.
Zhang J, VL Dawson, TM Dawson and SH Snyder (1994) Nitric oxide activation of poly(ADP-ribsoe) synthetase in neurotoxicity.Science 263, 687–689.
Zhu X, HG Lee and G Casadesus (2005) Oxidative imbalance in Alzheimer’s disease.Mol. Neurobiol. 31, 205–217.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Braidy, N., Guillemin, G. & Grant, R. Promotion of cellular NAD+ anabolism: Therapeutic potential for oxidative stress in ageing and alzheimer’s disease. neurotox res 13, 173–184 (2008). https://doi.org/10.1007/BF03033501
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF03033501