Skip to main content

Advertisement

Log in

Neurotoxins and neurotoxic species implicated in neurodegeneration

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neurotoxins, in the general sense, represent novel chemical structures which when administered in vivo orin vitro, are capable of producing neuronal damage or neurodegeneration—with some degree of specificity relating to neuronal phenotype or populations of neurons with specific characteristics (i.e., receptor type, ion channel type, astrocyte-dependence, etc.). The broader term ‘neurotoxin’ includes this categorization but extends the term to include intra- or extracellular mediators involved in the neurodegenerative event, including necrotic and apoptotic factors. Moreover, as it is recognized that astrocytes are essential supportive satellite cells for neurons, and because damage to these cells ultimately affects neuronal function, the term ‘neurotoxin’ might reasonably be extended to include those chemical species which also adversely affect astrocytes. This review is intended to highlight developments that have occurred in the field of ‘neurotoxins’ during the past 5 years, including MPTP/MPP+, 6-hydroxydopamine (6-OHDA), meth-amphetamine; salsolinol; leukoaminochrome-o-semi-quinone; rotenone; iron; paraquat; HPP+; veratridine; soman; glutamate; kainate; 3-nitropropionic acid; peroxynitrite anion; and metals (copper, manganese, lead, mercury). Neurotoxins represent tools to help elucidate intra- and extra-cellular processes involved in neuronal necrosis and apoptosis, so that drugs can be developed towards targets that interrupt the processes leading towards neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acquas E, A Bachis, RL Nosheny, I Cernak and I Mocchetti (2004) Human immunodeficiency virus type 1 protein gp120 causes neuronal cell death in the rat brain by activating caspasesNeurotoxicity Res. 5, 605–615.

    Google Scholar 

  • Aguilar Hernandez R, MJ Sanchez De Las Matas, C Arriagada, C Barcia, P Caviedes, MT Herrero and J Segura-Aguilar (2003) MPP+-induced degeneration is potentiated by dicoumarol in cultures of the RCSN-3 dopaminergic cell line. Implications of neuromelanin in oxidative metabolism of dopamine neurotoxicity.Neurotoxicity Res. 5, 407–410.

    Google Scholar 

  • Alexi T, PE Hughes, RL Faull and CE Williams (1998) 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration.NeuroReport 9, R57-R64.

    PubMed  CAS  Google Scholar 

  • Alexi T, CV Borlongan, RL Faull, CE Williams, RG Clark, PD Gluckman and PE Hughes (2000) Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases.Prog. Neurobiol. 60, 409–470.

    PubMed  CAS  Google Scholar 

  • Ananth C, S Dheen S, P Gopalakrishnakone and C Kaur (2003) Distribution of NADPH-diaphorase and expression of nNOS,N- methyl-D-aspartate receptor (NMDAR1) and non-NMDA glutamate receptor (GlutR2) genes in the neurons of the hippocampus after domoic acid-induced lesions in adult rats.Hippocampus 13, 260–272.

    PubMed  CAS  Google Scholar 

  • Andersen JK (2003) Paraquat and iron exposure as possible synergistic environmental risk factors in Parkinson’s disease.Neurotoxicity Res. 5, 307–313.

    Google Scholar 

  • Ara J, S Przedborski, AB Naini, V Jackson-Lewis, RR Trifiletti, J Horwitz and H Ischiropoulos (1998) Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Proc. Natl. Acad. Sci. USA 95, 7659–7663.

    PubMed  CAS  Google Scholar 

  • Archer T, T Palomo, R McArthur and A Fredriksson (2003) Effects of acute administration of DA agonists on locomotor activity: MPTP versus neonatal intracerebroventricular 6-OHDA treatment.Neurotoxicity Res. 5, 95–110.

    Google Scholar 

  • Archibald FS and C Tyree (1987) Manganese poisoning and the attack of trivalent manganese upon catecholamines.Arch. Biochem. Biophys. 256, 638–650.

    PubMed  CAS  Google Scholar 

  • Arriagada A, I Paris, MJ Sanchez de las Matas, P Martinez-Alvarado, S Cardenas, P Castañeda, R Graumann, C Perez-Pastene, C Olea-Azar, E Couve, MT Herrero, P Caviedes and J Segura-Aguilar (2004) On the neurotoxicity of leukoaminochrome-o-semiquinone radical derived of dopamine oxidation: mitochondria damage, necrosis and hydroxyl radical formation.Neurobiol. Dis. 16, 468–477.

    PubMed  CAS  Google Scholar 

  • Asanuma M, I Miyazaki and N Ogawa (2003) Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease.Neurotoxicity Res. 5, 165–176.

    Google Scholar 

  • Aschner M and TW Clarkson (1988) Distribution of mercury 203 in pregnant rats and their fetuses following systemic infusions with thiol-containing amino acids and glutathione during late gestation.Teratology 38, 145–155.

    PubMed  CAS  Google Scholar 

  • Bac P, N Pages, C Herrenknecht, P Maurois and J Durlach (2003) Magnesium deficiency reveals the neurotoxicity of ?-9-tetrahy-drocannabinol (THC) low doses in rats.Magnes. Res. 16, 21–28.

    PubMed  CAS  Google Scholar 

  • Baez S, Y Linderson and J Segura-Aguilar (1995) Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase.Biochem. Mol. Med. 54, 12–18.

    PubMed  CAS  Google Scholar 

  • Baldwin DA, TJ Egan and HM Marques (1990) The effects of anions on the kinetics of reductive elimination of iron from monoferrictransferrins by thiols.Biochim. Biophys. Acta 1038, 1–9.

    PubMed  CAS  Google Scholar 

  • Barbeito LH, M Pehar, P Cassina, MR Vargas, H Peluffo, L Viera, AG Estevez and JS Beckman (2004) A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis.Brain Res. Brain Res. Rev. 47(1–3), 263–274.

    PubMed  CAS  Google Scholar 

  • Barcia C, A Fernandez BarreirO, M Poza and MT Herrero MT (2003) Parkinson’s disease and inflammatory changes.Neurotoxicity Res. 5, 411–418. Review.

    Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G, Biagioni F, Storto M, Fornai F, Nicoletti F, Bruno V (2004) Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice.J. Neurosci. 24(4), 828–835.

    PubMed  CAS  Google Scholar 

  • Baumgarten HG and L Lachenmayer (2004) Serotonin neurotoxins- past and present.Neurotoxicity Res. 6, 589–614.

    CAS  Google Scholar 

  • Beal MF, E Brouillet, BG Jenkins, RJ Ferrante, NW Kowall, JM Miller, E Storey, R Srivastava, BR Rosen and BT Hyman (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid.J. Neurosci. 13, 4181–4192.

    PubMed  CAS  Google Scholar 

  • Beckman JS and WH Koppenol (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.Am. J. Physiol. 271, C1424-C1437.

    PubMed  CAS  Google Scholar 

  • Benner EJ, RL Mosley, CJ Destache, TB Lewis, V Jackson-Lewis, S Gorantla, C Nemachek, SR Green, S Przedborski and HE Gendelman (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease.Proc. Natl. Acad. Sci. USA 101 (25), 9435–9440. Epub 2004 Jun 14.

    PubMed  CAS  Google Scholar 

  • Berg D, G Becker, P Riederer and O Riess (2002) Iron in neurode-generative disorders.Neurotoxicity Res. 4, 637–653.

    CAS  Google Scholar 

  • Berger K, S Przedborski and JL Cadet (1990) Retrograde degeneration of nigrostriatal neurons induced by intrastriatal 6-hydroxy-dopamine injection in rats.Brain Res. Bull. 26, 301–307.

    Google Scholar 

  • Blank CL, RJ Lewis and RE Lehr (1998) 6-Hydroxydopamine and related catecholaminergic neurotoxins: molecular mechanisms, InHighly Selective Neurotoxins: Basic and Clinical Applications (Kostrzewa RM, Ed.) (Humana Press: Totowa, NJ, USA), pp 1–18.

    Google Scholar 

  • Boldyrev A, E Bulygina and A Makhrosome (2004) Glutamate receptors modulate oxidative stress in neuronal cells. a minireview.Neurotoxicity Res. 6, 581–587.

    CAS  Google Scholar 

  • Bonfoco E, D Krainc, M Ankarcrona, P Nicotera and SA Lipton (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults withN-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures.Proc. Natl. Acad. Sci. USA 92, 7162–7166.

    PubMed  CAS  Google Scholar 

  • Bouldin TW, ND Goines, CR Bagnell and MR Krigman (1981) Pathogenesis of trimethyltin neuronal toxicity: ultrastructural and cytochemical observations.Am. J. Pathol. 104, 237–249.

    PubMed  CAS  Google Scholar 

  • Breese CR and GR Breese (1998) The use of neurotoxins to lesion catecholamine-containing neurons to model clinical disorders: approach for defining adaptive neural mechanisms and role of neurotrophic factors in brain, InHighly Selective Neurotoxins: Basic and Clinical Applications (Kostrzewa RM, Ed.) (Humana Press: Totowa, NJ, USA), pp 19–73.

    Google Scholar 

  • Bressler J, KA Kim, T Chakraborti and G Goldstein (1999) Molecular mechanisms of lead neurotoxicity.Neurochem. Res. 24, 595–600.

    PubMed  CAS  Google Scholar 

  • Brouillet E, MC Guyot, V Mittoux, S Altairac, F Conde, S Palfi and P Hantraye (1998) Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat.J. Neurochem. 70, 794–805

    PubMed  CAS  Google Scholar 

  • Brouillet E, F Conde, MF Beal and P Hantraye (1999) Replicating Huntingon’s disease phenotype in experimental animals.Prog. Neurobiol. 59, 427–468.

    PubMed  CAS  Google Scholar 

  • Bruccoleri A, H. Brown and Harry GJ (1998) Cellular localization and temporal elevation of tumor necrosis factor-α, interleukin-1α, and transforming growth factor-ß1 mRNA in hippocampal injury response induced by trimethyltin.J. Neurochem. 71, 1577–1587.

    PubMed  CAS  Google Scholar 

  • Brus R, RM Kostrzewa, P Nowak, KW Perry and JP Kostrzewa (2003) Ontogenetic quinpirole treatments fail to prime for D2 agonist-enhancement of locomotor activity in 6-hydroxy-dopamine-lesioned rats.Neurotoxicity Res. 5, 329–338.

    Google Scholar 

  • Bustamante D, L Bustamante, J Segura-Aguilar, M Goiny and M Herrera-Marschitz (2004) Effects of the DT-diaphorase inhibitor dicumarol on striatal monoamine levels in L-DOPA and L-deprenyl pre-treated rats.Neurotoxicity Res. 5, 569–577.

    Google Scholar 

  • Cadet JL (2001) Molecular neurotoxicological models of Parkinsonism: focus on genetic manipulation of mice.Parkinsonism Rltd. Disord. 8, 85–90.

    CAS  Google Scholar 

  • Cadet JL and C Brannock (1998) Free radicals and the pathobiology of brain dopamine systems.Neurochem. Int. 32, 117–131. Review.

    PubMed  CAS  Google Scholar 

  • Cadet JL, P Sheng, S Ali, R Rothman, E Carlson and C Epstein (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice.J. Neurochem. 62, 380–383.

    PubMed  CAS  Google Scholar 

  • Cammarota M, LR Bevilaqua, JS Bonini, JI Rossatto, JH Medina and I Izquierdo (2004) Hippocampal glutamate receptors in fear memory consolidation.Neurotoxicity Res. 6, 205–212.

    Google Scholar 

  • Carpentier P, M Lambrinidis and G Blanchet (1991) Early dendritic changes in hippocampal pyramidal neurones (field CA1) of rats subjected to acute soman intoxication: a light microscopic study.Brain Res. 541, 293–299.

    PubMed  CAS  Google Scholar 

  • Cassanelli S and J Moulis (2001) Sulfide is an efficient iron releasing agent for mammalian ferritins.Biochim. Biophys. Acta 1547, 174–182.

    PubMed  CAS  Google Scholar 

  • Castoldi AF, S Barni, I Turin, C Gandini and L Manzo (2000) Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to methylmercury.J. Neurosci. Res. 59, 775–787.

    PubMed  CAS  Google Scholar 

  • Caviedes P and J Segura-Aguilar (2001) The price of development in Chile: overcoming environmental hazards produced by heavy industrial exploitation.Neuroreport 12, A25.

    Google Scholar 

  • Chabrier PE, C Demerle-Pallardy and M Auguet (1999) Nitric oxide synthases: targets for therapeutic strategies in neurological diseases.Cell. Mol. Life Sci. 55, 1029–1035.

    PubMed  CAS  Google Scholar 

  • Chandrasekaran A, G Ponnambalam and C Kaur (2004) Domoic acid-induced neurotoxicity in the hippocampus of adult rats.Neurotoxicity Res. 6, 105–117.

    Google Scholar 

  • Chang LW and Dyer RS (1983) Atime-course study of trimethyltin-induced neuropathology in rats.Neurobehav. Toxicol. Teratol. 5, 443–459.

    PubMed  CAS  Google Scholar 

  • Cheng N, T Maeda, T Kume, S Kaneko, H Kochiyama, A Akaike, Y Goshima and Y Misu (1996) Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons.Brain Res. 743, 278–283.

    PubMed  CAS  Google Scholar 

  • Cheung MK and MA Verity (1985) Experimental methyl mercury neurotoxicity:locus of mercurial inhibition of brain protein synthesisin vivo andin vitro. J. Neurochem. 44, 1799–1807.

    CAS  Google Scholar 

  • Choi DW (1990) Methods for antagonizing glutamate neurotoxicity. Cerebrovasc.Brain Metab. Rev. 2, 105–147.

    CAS  Google Scholar 

  • Cohen G and RE Heikkila (1974) The generation of hydrogen peroxide, superoxide radical and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents.J. Biol. Chem. 249, 2447–2452.

    PubMed  CAS  Google Scholar 

  • Cohen G, RE Heikkila, B Allis, D Cabbat, D Bembiec, D MacNamee, C Mytlineou and B Winston (1976) Destruction of sympathetic nerve terminals by 6-hydroxydopamine: protection by 1-phenyl-3-(2-thiazolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol, and n-butanol.J. Pharmacol. Exp. Ther. 199, 336–352.

    PubMed  CAS  Google Scholar 

  • Colasanti BK (1985) Intraocular pressure, ocular toxicity and neurotoxicity in response to 11-hydroxy-delta 9-tetrahydrocannabinol and 1-nantradol.J. Ocul. Pharmacol. 1, 123–135.

    PubMed  CAS  Google Scholar 

  • Conway KA, JC Rochet, RM Bieganski and PT Lansbury Jr (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine-?-synuclein adduct.Science 294, 1346–1349.

    PubMed  CAS  Google Scholar 

  • Costall B, RJ Naylor and C Pycock (1975) The 6-hydroxydopamine rotational model for the detection of dopamine agonist activity: reliability of effect from different locations of 6-hydroxydopamine.J. Pharm. Pharmacol. 27, 943–946.

    PubMed  CAS  Google Scholar 

  • Crow JP, YZ Ye, M Strong, M Kirk, S Barnes and JS Beckman (1997) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L.J. Neurochem. 69, 1945–1953.

    PubMed  CAS  Google Scholar 

  • Dass B, MM Iravani, C Huang, J Barsoum, TM Engber, A Galdes and P Jenner (2004) Sonic hedgehog delivered by an adeno-associated virus protects dopaminergic neurones against 6-OHDA toxicity in the rat.J. Neural Transm. 2004 Dec 10; [Epub ahead of print].

  • Dave JR, Y Lin, HS Ved, MI Koenig, L Clapp, J Hunter and FC Tortella (2001) RS-100642-198, a novel sodium channel blocker, provides differential neuroprotection against hypoxia-hypoglycemia, veratridine or glutamate-mediated neurotoxicity in primary cultures of rat cerebellar neurons.Neurotoxicity Res. 3, 381–396.

    CAS  Google Scholar 

  • Dave JR, C Yao, JR Moffett, R Berti, M Koenig and FC Tortella FC (2003a) Down regulation of sodium channel Na(v)1.1 expression by veratridine and its reversal by a novel sodium channel blocker, RS 100642, in primary neuronal cultures.Neurotoxicity Res. 5, 213–220.

    Google Scholar 

  • Dave JR, AJ Williams, JR Moffett, ML Koenig and FC Tortella (2003b) Studies on neuronal apoptosis in primary forebrain cultures: neuroprotective/anti-apoptotic action of NR2B NMDA antagonists.Neurotoxicity Res. 5, 255–264.

    Google Scholar 

  • Dexter DT, J Sian, P Jenner and CD Marsden (1993) Implications of alterations in trace element levels in brain in Parkinson’s disease and other neurological disorders affecting the basal ganglia.Adv.Neurol. 60, 273–281.

    PubMed  CAS  Google Scholar 

  • Diaz-Veliz G, S Mora, H Lungenstrass and J Segura-Aguilar (2004) Inhibition of DT-diaphorase potentiates thein vivo neurotoxic effect of intranigral injection of salsolinol in rats.Neurotoxicity Res. 5, 629–633.

    CAS  Google Scholar 

  • Diaz-Veliz G, S Mora, P Gomez, MT Dossi, J Montiel, C Arriagada, F Aboitiz and J Segura-Aguilar (2004) Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor.Pharmacol. Biochem. Behav. 77, 245–251.

    PubMed  CAS  Google Scholar 

  • Dong Z, DP Wolfer, HP Lipp and H Bueler (2005) Hsp70 gene gransfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease.Mol. Ther. 11 (1), 80–88.

    PubMed  CAS  Google Scholar 

  • Double K, M Maywald, M Schmittel, P Riederer and M Gerlach (1998)In vitro studies of ferritin iron release and neurotoxicity.J. Neurochem. 70, 2492–2499.

    PubMed  CAS  Google Scholar 

  • Doucette TA, PB Bernard, H Husum, MA Perry, CL Ryan and RA Tasker (2004) Low doses of domoic acid during postnatal development produce permanent changes in rat behaviour and hippocampal morphology.Neurotoxicity Res. 6(7,8), 555–563.

    CAS  Google Scholar 

  • Drolet RE, B Behrouz, KJ Lookingland and JL Goudreau (2004) Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration.Neurotoxicology 25(5), 761–769.

    PubMed  CAS  Google Scholar 

  • Eliasson MJ, K Sampei, AS Mandir, PD Hurn, RJ Traystman, J Bao, A Pieper, ZQ Wang, TM Dawson, SH Snyder and VL Dawson (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia.Nat. Med. 3, 1089–1095.

    PubMed  CAS  Google Scholar 

  • Emdadul Haque M, M Asanuma, Y Higashi, I Miyazaki, K Tanaka and N Ogawa (2003) Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells.Biochim. Biophys. Acta 1619, 39–52.

    Google Scholar 

  • Eminel S, A Klettner, L Roemer, T Herdegen and V Waetzig (2004) JNK2 translocates to the mitochondria and mediates cytochrome c release in PC12 cells in response to 6-hydroxydopamine.J. Biol. Chem. 2004 Oct 25; [Epub ahead of print] In press

  • Ferger B, A Leng, A Mura, B Hengerer and J Feldon (2004) Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum.J. Neurochem. 89(4), 822–833.

    PubMed  CAS  Google Scholar 

  • Filipkowski RK, M Hetman, B Kaminska and L Kaczmarek (1994) DNA fragmentation in rat brain after intraperitoneal administration of kainite.NeuroReport 5, 1538–1540.

    PubMed  CAS  Google Scholar 

  • Foppoli C, R Coccia, C Cini and MA Rosei (1997) Catecholamines oxidation by xanthine oxidase.Biochim. Biophys. Acta 1334, 200–206.

    PubMed  CAS  Google Scholar 

  • Freitas AJ, JB Rocha, H Wolosker and DO Souza (1996) Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes.Brain Res. 738, 257–264.

    PubMed  CAS  Google Scholar 

  • Fujikawa DG, SS Shinmei and B Cai (2000) Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms.Neuroscience 98, 41–53.

    PubMed  CAS  Google Scholar 

  • Galzigna L, A De Iuliis and L Zanatta (2000) Enzymatic dopamine peroxidation in substantia nigra of human brain.Clin. Chim. Acta 300, 131–138.

    PubMed  CAS  Google Scholar 

  • Gassó S, C Suñol, C Sanfeliu, E Rodríguez-Farré and RM Cristòfol (2000) Pharmacological characterization of the effects of methylmercury and mercuric chloride on spontaneous noradrenaline release from rat hippocampal slices.Life Sci. 67, 1219–1231.

    PubMed  Google Scholar 

  • Gelinas S, G Bureau, B Valastro, G Massicotte, F Cicchetti, K Chiasson, B Gagne, J Blanchet and MG Martinoli (2004) Alpha and beta estradiol protect neuronal but not native PC12 cells from paraquat-induced oxidative stress.Neurotoxicity Res. 6(2), 141–148.

    Google Scholar 

  • Gerlach M, P Riederer, H Przuntek and MBH Youdim (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease.Eur. J. Pharmacol. (Mol. Pharmacol. Sect.) 208, 273–286.

    CAS  Google Scholar 

  • Gerlach M, KL Double, D Ben-Shachar, L Zecca, MBH Youdim and P Riederer (2003) Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease.Neurotoxicity Res. 5, 35–44.

    Google Scholar 

  • Gjedde A and Evans AC (1990) PET studies of domoic acid poisoning in humans: excitotoxic destruction of brain glutamatergic pathways, revealed in measurements of glucose metabolism by positron emission tomography.Can. Dis. Wkly. Rep. 16 Suppl. 1E, 105–109.

    PubMed  Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  • Greenamyre JT and AB Young (1989) Excitatory amino acids and Alzheimer’s disease.Neurobiol. Aging 10, 593–602.

    PubMed  CAS  Google Scholar 

  • Greenamyre JT, R Betarbet and TB Sherer (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria.Parkinsonism Relat. Disord. Suppl. 2, S59-S64.

    Google Scholar 

  • Han BC, SB Koh, EY Lee and YH Seong (2004) Regional difference of glutamate-induced swelling in cultured rat brain astrocytes.Life Sci. 76, 573–583.

    PubMed  CAS  Google Scholar 

  • Harry GJ, CA McPherson, RN Wine, K Atkinson and C Lefebvre d’Hellencourt (2004) Trimethyltin-induced neurogenesis in the murine hippocampus.Neurotoxicity Res. 5, 623–627.

    Google Scholar 

  • Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase.J. Neurochem. 64, 919–924.

    PubMed  CAS  Google Scholar 

  • Hawley MD, SV Tatawawadi, S Piekarski and RN Adams (1967) Electrochemical studies of the oxidation pathways of catecholamines.J. Am. Chem. Soc. 89, 447–450.

    PubMed  CAS  Google Scholar 

  • Heales SJ, JP Bolanos, VC Stewart, PS Brookes, JM Land and JB Clark (1999) Nitric oxide, mitochondria and neurological disease.Biochim. Biophys. Acta 1410, 215–228.

    PubMed  CAS  Google Scholar 

  • Heidemann SR, P Lamoureux and WD Atchison (2001) Inhibition of axonal morphogenesis by nonlethal, submicromolar concentrations of methylmercury.Toxicol. Appl. Pharmacol. 174, 49–59.

    PubMed  CAS  Google Scholar 

  • Hertzman C, M Wiens, D Bowering, B Snow and D Calne (1990) Parkinson’s disease: a case-control study of occupational and environmental risk factors.Am. J. Ind. Med. 17, 349–355.

    PubMed  CAS  Google Scholar 

  • Hirata H and JL Cadet (1997) p53-knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies.J. Neurochem. 69, 780–790.

    PubMed  CAS  Google Scholar 

  • Hirata HH, B Ladenheim, E Carlson, C Epstein and JL Cadet (1996) Autoradiographic evidence for methamphetamineinduced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice.Brain Res. 714, 95–103.

    PubMed  CAS  Google Scholar 

  • Hubert JP, JC Delumeau, J Glowinski, J Prémont and A Doble (1994) Antagonism by riluzole of entry of calcium evoked by NMDA and veratridine in rat cultured granule cells: evidence for a dual mechanism of action.Br. J. Pharmacol. 113, 261–267.

    PubMed  CAS  Google Scholar 

  • Hunot S, M Vila, P Teismann, RJ Davis, EC Hirsch, S Przedborski, P Rakic and RA Flavell (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease.Proc. Natl. Acad. Sci. USA 101(2), 665–670.

    PubMed  CAS  Google Scholar 

  • Igaz LM, P Bekinschtein, MMR Vianna, I Izquierdo and JH Medina (2004) Gene expression during memory formation.Neurotoxicity Res. 6, 189–204.

    Google Scholar 

  • Inui K, N Egashira, K Mishima, A Yano, Y Matsumoto, N Hasebe, K Abe, K Hayakawa, T Ikeda, K Iwasaki and M Fujiwara (2004) The serotonin 1A receptor agonist 8-OHDPAT reverses delta9-tetrahydrocannabinol-induced impairment of spatial memory and reduction of acetylcholine release in the dorsal hippocampus in rats.Neurotoxicity Res. 6, 153–158.

    Google Scholar 

  • Ishida N, M Akaike, S Tsutsumi, H Kanai, A Masui, M Sadamatsu, Y Kuroda, Y Watanabe, BS McEwen and N Kato (1997) TMT syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment.Neuroscience 81, 1183–1191.

    PubMed  CAS  Google Scholar 

  • Ishihara K, M Alkondon, JG Montes and E Albuquerque (1995) Nicotinic responses in acutely dissociated rat hippocampal neurons and the selective blockade of fast-desensitizing nicotinic currents by lead.J. Pharmacol. Exp. Ther. 273, 1471–1482.

    PubMed  CAS  Google Scholar 

  • Itzhak Y, C Gandia, PL Huang and SF Ali (1998) Resistance of neuronalnitric oxide synthase-deficient mice to methamphetamineinduced dopaminergic neurotoxicity.J. Pharmacol. Exp. Ther. 284, 1040–1047.

    PubMed  CAS  Google Scholar 

  • Izquierdo I, M Cammarota, MRM Vianna and LRM Bevilaqua (2004) The inhibition of acquired fear.Neurotoxicity Res. 6, 175–188.

    Google Scholar 

  • Jenner P and CD Marsden (1986) The actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in animals as a model of Parkinson’s disease.J. Neural Transm. Suppl. 20, 11–39.

    PubMed  CAS  Google Scholar 

  • Jacobsson SO and CJ Fowler (1999) Dopamine and glutamate neurotoxicity in cultured chick telencephali cells: effects of NMDA antagonists, antioxidants and MAO inhibitors.Neurochem. Int. 34, 49–62.

    PubMed  CAS  Google Scholar 

  • Johnson-Davis KL, GR Hanson and KA Keefe (2003) Lack of effect of kappa-opioid receptor agonism on long-term methamphetamine-induced neurotoxicity in rats.Neurotoxicity Res. 5, 273–281.

    Google Scholar 

  • Kato H, R Kurosaki, C Oki and T Araki (2004) Arundic acid, an astrocyte-modulating agent, protects dopaminergic neurons against MPTP neurotoxicity in mice.Brain Res. 1030, 66–73.

    PubMed  CAS  Google Scholar 

  • Kawashima H, Y Iida, Y Kitamura and H Saji (2004) Binding of 4-(4-chlorophenyl)-1 -[4-(4-fluorophenyl)-4-oxobutyl]pyridinium ion (HPP+), a metabolite of haloperidol, to synthetic melanin: implications for the dopaminergic neurotoxicity of HPP+.Neurotoxicity Res. 6, 535–542.

    Google Scholar 

  • Kimelberg HK (1995) Current concepts of brain edema. Review of laboratory investigations.J. Neurosurgery 83, 1051–1059.

    CAS  Google Scholar 

  • Klaidman LK, JD Adams Jr, R Cross, TL Pazdernik and F Samson (2003) Alterations in brain glutathione homeostasis induced by the nerve gas soman.Neurotoxicity Res. 5, 177–182.

    Google Scholar 

  • Klegeris A, CJ Bissonnette and PL McGeer (2003) Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor.Br. J. Pharmacol. 139, 775–786.

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM (1995) Dopamine receptor supersensitivity.Neurosci. Biobehav. Rev. 19, 1–17.

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM (1999) Selective neurotoxins, chemical tools to probe the mind: the first thirty years and beyond.Neurotoxicity Res. 1, 3–25.

    CAS  Google Scholar 

  • Kostrzewa RM (2001) Mechanisms of action of 6-hydroxydopamine, a dopaminergic neurotoxin, InMechanisms of Degeneration and Protection of the Dopaminergic System (Segura-Aguilar J., Ed.) (FP Graham Publishing Co.: Johnson City, TN, USA), pp 85–104.

    Google Scholar 

  • Kostrzewa RM and J Segura-Aguilar (2003) Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. A review.Neurotoxicity Res. 5, 375–383.

    Google Scholar 

  • Kostrzewa RM, TA Reader and L Descarries (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain.J. Neurochem. 70, 889–898.

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, JP Kostrzewa and R Brus (2003) Dopamine receptor supersensitivity: an outcome and index of neurotoxicity.Neurotoxicity Res. 5, 111 -118.

    Google Scholar 

  • Kostrzewa RM, JP Kostrzewa, P Nowak, RA Kostrzewa and R Brus (2004) Dopamine D2 agonist priming in intact and dopaminelesioned rats.Neurotoxicity Res. 6, 457–462.

    Google Scholar 

  • Kuca K, Patocka J, Cabal J and Jun D (2004) reactivation of organophosphate-inhibited acetylcholinesterase by quaternary pyridinium aldoximes.Neurotoxicity Res. 6, 565–570.

    Google Scholar 

  • Lai CT and PH Yu (1997) Dopamine and L-dopa induced cytotoxicity towards catecholaminergic neuroblastoma SH-5Y5Y cells: effects of oxidative stress and antioxidative factors.Biochem. Pharmacol. 53, 363–372

    PubMed  CAS  Google Scholar 

  • Lallement G, M Denoyer, A Collet, I Pernot-Mariono, D Baubichon, P Monmauret al. (1992) Changes in hippocampal acetylcholine and glutamate extracellular levels during somaninduced seizures: influence of septal cholinoceptive cells.Neurosci. Lett. 139, 104–107.

    PubMed  CAS  Google Scholar 

  • Laulhere JP, F Barcelo and M Fontecave (1996) Dynamic equilibria in iron uptake and release by ferritin.Biometals 9, 303–309.

    PubMed  CAS  Google Scholar 

  • LaVoie MJ and TG Hasting (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxici ty of methamphetamine: evidence against a role for extracellular dopamine.J. Neurosci. 19, 1484–1491.

    PubMed  CAS  Google Scholar 

  • Leist M, B Single, AF Castoldi, S Kuhnle and P Nicotera (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis.J. Exp. Med. 185, 1481–1486.

    PubMed  CAS  Google Scholar 

  • Liou HH, MC Tsai, CJ Chen, JS Jeng, YC Chang, SY Chen and RC Chen (1997) Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan.Neurology 48, 1583–1588.

    PubMed  CAS  Google Scholar 

  • Loots du T, LJ Mienie, JJ Bergh and CJ Van der Schyf (2004) Acetyl-L-carnitine prevents total body hydroxyl free radical and uric acid production induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the rat.Life Sci. 75(10), 1243–1253.

    PubMed  Google Scholar 

  • Loudianos G and JD Gitlin (2000) Wilson’s disease.Semin. Liver Dis. 20, 353–364.

    PubMed  CAS  Google Scholar 

  • Mandel S, L Reznichenko, T Amit and MB Youdim (2003) Green tea polyphenol (-)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway.Neurotoxicity Res. 5, 419–424.

    Google Scholar 

  • Manzanares J, L Uriguen, G Rubio and T Palomo (2004) Role of endocannabinoid system in mental diseases.Neurotoxicity Res. 6, 213–224.

    Google Scholar 

  • Marchetti C (2003) Molecular targets of lead in brain neurotoxicity.Neurotoxicity Res. 5, 221–236.

    Google Scholar 

  • Marshall JF and U Ungerstedt (1977) Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model.Eur. J. Pharmacol. 41, 361–367.

    PubMed  CAS  Google Scholar 

  • Martinez-Alvarado P, A Dagnino-Subiabre, I Paris, D Metodiewa, C Welch, C Olea-Azar, P Caviedes, R Caviedes and J Segura-Aguilar (2001) Possible role of salsolinol quinone methide on RCSN-3 cells survival decrease.Biochem. Biophys. Res. Commun. 283, 1069–1076.

    PubMed  CAS  Google Scholar 

  • Martinez-Palma L, M Pehar, P Cassina, H Peluffo, R Castellanos, G Anesetti, JS Beckman and L Barbeito (2003) Involvement of nitric oxide on kainate-induced toxicity in oligodendrocyte precursors.Neurotoxicity Res. 5, 399–406.

    Google Scholar 

  • Maruyama W, T Abe, H Tohgi, P Dostert and M Naoi (1996) A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in parkinsonian cerebrospinal fluid.Ann. Neurol. 40, 119–122.

    PubMed  CAS  Google Scholar 

  • Masserano JM, L Gong, H Kulaga, I Baker and RJ Wyatt (1996) Dopamine induces apoptotic cell death of a catecholaminergic cell line derived from the central nervous system.Mol. Pharmacol. 50, 1309–1315.

    PubMed  CAS  Google Scholar 

  • Masserano JM, I Baker, D Venable, L Gong, SJ Zullo, CR Merril and RJ Wyatt (2000) Dopamine induces cell death, lipid peroxidation and DNA base damage in a catecholaminergic cell line derived from the central nervous system.Neurotoxicity Res. 1, 171–179.

    CAS  Google Scholar 

  • McCann MJ, JP O’Callaghan, PM Martin, T Bertram and WJ Streit (1996) Differential activation of microglia and astrocytes following trimethyltin-induced neurodegeneration.Neuroscience 72, 273–281.

    PubMed  CAS  Google Scholar 

  • McCormack AL, M Thiruchelvam, AB Manning-Bog, C Thiffault, JW Langston, DA Cory-Slechta and DA Di Monte (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat.Neurobiol. Dis. 10, 119–127.

    PubMed  CAS  Google Scholar 

  • McCormack AL and DA Di Monte (2003) Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration.J. Neurochem. 85, 82–86.

    PubMed  CAS  Google Scholar 

  • McDonough Jr JH and TM Shih (1997) Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology.Neurosci. Biobehav. Rev. 21, 559–579.

    CAS  Google Scholar 

  • McEwen BS, JM Weiss and LS Schwartz (1968) Selective retention of corticosterone by limbic structures in rat brain.Nature 220, 911–912.

    PubMed  CAS  Google Scholar 

  • McPherson CA, J Kubik, RN Wine, CL D’Hellencourt and GJ Harry (2003) Alterations in cyclin A, B, and D1 in mouse dentate gyrus following TMT-induced hippocampal damage.Neurotoxicity Res. 5, 339–354.

    Google Scholar 

  • Miura K, Y Kobayashi, H Toyoda and N Imura (1998) Methylmercury-induced microtubule depolymerization leads to inhibition of tubulin synthesis.J. Toxicol. Sci. 23, 379–388.

    PubMed  CAS  Google Scholar 

  • Miura K, N Koide, S Himeno, I Nakagawa and N Imura (1999) The involvement of microtubular disruption in methylmercuryinduced apoptosis in neuronal and nonneuronal cell lines.Toxicol. Appl. Pharmacol. 160, 279–288.

    PubMed  CAS  Google Scholar 

  • Moser A and D Kompf (1992) Presence of methyl-6,7-dihydroxy- 1,2,3,4-tetrahydroisoquinolines, derivatives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF.Life Sci. 50, 1885–1891.

    PubMed  CAS  Google Scholar 

  • Moser A, J. Scholz, F. Nobbe, P. Vieregge, V. Böhme and H. Bamberg (1995) Presence of N-methyl-norsalsolinol in the CSF: correlation with dopamine metabolites of patients with Parkinson’s disease.J. Neurol. Sci. 131, 183–189.

    PubMed  CAS  Google Scholar 

  • Munirathinam S and BA Bahr (2004) Repeated contact with subtoxic soman leads to synaptic vulnerability in hippocampus.J. Neurosci. Res. 77, 739–746.

    PubMed  CAS  Google Scholar 

  • Mytilineou C (2001) Mechanism of MPTP neurotoxicity, InMechanisms of Degeneration and Protection of the Dopaminergic System (Segura-Aguilar J, Ed.) (FP Graham Publ. Co.: Johnson City, TN, USA), pp 131–148.

    Google Scholar 

  • Nadler JV, BW Perry, C Gentry and CW Cotman (1980) Degeneration of hippocampal CA3 pyramidal cells induced by intraventricular kainic acid.J. Comp. Neurol. 192, 333–359.

    PubMed  CAS  Google Scholar 

  • Naoi M, W Maruyama, P Dostert, Y Hashizume, D Nakahara, T Takahashiet al. (1996) Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetra-hydroisoqunoline,N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies.Brain Res. 709, 285–295.

    PubMed  CAS  Google Scholar 

  • Naoi M, W Maruyama, T Kasamatsu and P Dostert (1998) Oxidation of N-methyl(R)salsolinol: involvement to neurotoxicity and neuroprotection by endogenous catechol isoquinolines.J. Neural Transm. Suppl. 52, 125–138.

    PubMed  CAS  Google Scholar 

  • Nilsberth C, Kostyszyn B, Luthman J (2002) Changes in APP, PS1 and other factors related to Alzheimer’s disease pathophysiology after trimethyltin-induced brain lesion in the rat.Neurotoxicity Res. 4, 625–636.

    CAS  Google Scholar 

  • O’Dell SJ, FB Weihmuller, RJ McPherson and JF Marshall (1994) Excitotoxic striatal lesions protect against subsequent methamphetamine-induced dopamine depletions.J. Pharmacol. Exp. Ther. 269, 319–1325.

    Google Scholar 

  • Offen, D, I Ziv, S Gorodin, A Barzilai, Z Malik and E Melamed (1995) Dopamine-induced programmed cell death in mouse thymocytes.Biochim. Biophys. Acta 1268, 171–177.

    PubMed  Google Scholar 

  • Offen D, PM Beart, NS Cheung, CJ Pascoe, A Hochman, S Gorodin, E Melamed, R Bernard and O Bernard (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity.Proc. Natl. Acad. Sci. USA 95, 5789–5794.

    PubMed  CAS  Google Scholar 

  • Offen D, H Panet, R Galili-Mosberg and E Melamed (2001) Catechol-O-methyltransferase decreases levodopa toxicityin vitro.Clin. Neuropharmacol. 24, 27–30.

    PubMed  CAS  Google Scholar 

  • Ohta M, T Narahashi and RF Keeler (1973) Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons.J. Pharmacol. Exp. Ther. 184, 143–154.

    CAS  Google Scholar 

  • Olney JW, T Fuller and T De Gubareff (1979) Acute dendrotoxic changes in the hippocampus of kainate treated rats.Brain Res. 176, 91–100.

    PubMed  CAS  Google Scholar 

  • Pal PK, A Samii and DB Calne (2001) Manganism in neurodegeneration and parkinsonism: mechanisms, pathology and comparison to Parkinson’s disease, InMechanisms of Degeneration and Protection of the Dopaminergic System (Segura-Aguilar, J, Ed.) (FP Graham Publ. Co.: Johnson City, TN, USA), pp 67–84.

    Google Scholar 

  • Pang Z and JW Geddes (1997) Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis.J. Neurosci. 17, 3064–3073.

    PubMed  CAS  Google Scholar 

  • Paris I, A Dagnino-Subiabre, K Marcelain, LB Bennett, P Caviedes, R Caviedes, C Olea-Azar and J Segura-Aguilar (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line.J. Neurochem. 77, 519–529.

    PubMed  CAS  Google Scholar 

  • Paris I, P Martinez-Alvarado, P Perez-Pastene, MNN Vieira, C Olea-Azar, R Raisman-Vozari, S Cardenas, R Graumann, P Caviedes and J Segura-Aguilar (2005) Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron toxicity in cells derived from the substantia nigra.J. Neurochem. in press.

  • Pehar M, L Martinez-Palma, H Peluffo, A Kamaid, P Cassina and L Barbeito (2002) Peroxynitrite-induced cytotoxicity in cultured astrocytes is associated with morphological changes and increased nitrotyrosine immunoreactivity.Neurotoxicity Res. 4, 87–93.

    CAS  Google Scholar 

  • Pereira FC, TR Macedo, SZ Imam, CF Ribeiro and SF Alij (2004) Lack of hydroxyl radical generation upon central administration of methamphetamine in rat caudate nucleus: a microdialysis study.Neurotoxicity Res. 6, 149–152.

    Google Scholar 

  • Perl TM, K Bedard, T Kosatsky, JC Hockin, EC Todd, LA McNutt and RS Remis (1990) Amnesic shellfish poisoning: a new clinical syndrome due to domoic acid.Can. Dis. Wkly. Rep. 16 Suppl. 1E, 7–8.

    PubMed  Google Scholar 

  • Perry TL and S Hansen (1990) What excitotoxin kills striatal neurons in Huntington’s disease? Clues from neurochemical studies.Neurology 40, 20–24.

    PubMed  CAS  Google Scholar 

  • Pollard H, C Charriaut-Marlangue, S Cantagrel, A Represa, O Robain, J Moreau and Y Ben Ari (1994) Kainate-induced apoptotic cell death in hippocampal neurons.Neuroscience 63, 7–18.

    PubMed  CAS  Google Scholar 

  • Radi R, JS Beckman, KM Bush and BA Freeman (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide.Arch. Biochem. Biophys. 288, 481–487.

    PubMed  CAS  Google Scholar 

  • Ramnath RR, K Strange and PA Rosenberg (1992) Neuronal injury evoked by depolarizing agents in rat cortical cultures.Neuroscience 51, 931–939.

    PubMed  CAS  Google Scholar 

  • Riordan SM and R Williams (2001) The Wilson’s disease gene and phenotypic diversity.J. Hepatol. 34, 165–171.

    PubMed  CAS  Google Scholar 

  • Rivera F, J Urbanavicius, E Gervaz, A Morquio and F Dajas (2004) Neuroprotective capacity of flavonoids: bioavailability and structure-activity relationship.Neurotoxicity Res. 4, 543–555.

    Google Scholar 

  • Rothstein JD, M Van Kammen, AI Levy, L Martin and RW Kuncl (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis.Ann. Neurol. 38, 73–84.

    PubMed  CAS  Google Scholar 

  • Sakka N, H Sawada, Y Izumi, T Kume, H Katsuki, S Kaneko, S Shimohama and A Akaike (2003) Dopamine is involved in selectivity of dopaminergic neuronal death by rotenone.Neuroreport 14, 2425–2428.

    PubMed  CAS  Google Scholar 

  • Sandler M, S Bonham, K Carter, R Hunter and GM Stern (1973) Tetrahydroisoquinoline alkaloids:in vivo metabolites of L-DOPA in man.Nature 241, 439–443.

    PubMed  CAS  Google Scholar 

  • Sanfeliu C, J Sebastia, R Cristofol and E Rodriguez-Farre (2003) Neurotoxicity of organomercurial compounds.Neurotoxicity Res. 5, 283–305.

    Google Scholar 

  • Schmuck G, E Rohrdanz, QH Tran-Thi, R Kahl and G Schluter (2002) Oxidative stress in rat cortical neurons and astrocytes induced by paraquatin vitro. Neurotoxicity Res. 4, 1–13.

    CAS  Google Scholar 

  • Schneider JS and FJ Denaro (1988) Astrocytic responses to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) in cat and mouse brain.J. Neuropathol. Exp. Neurol. 47, 452–458.

    PubMed  CAS  Google Scholar 

  • Schousboe A and A Frandsen (1995) Glutmate receptors and neurotoxicity, In CNSNeurotransmitters and Neuromodulators: Glutamate (Stone TW, Ed.) (CRC Press: Boca Raton, FL, USA), pp 239–251.

    Google Scholar 

  • Segura-Aguilar J (1996) Peroxidase activity of liver microsomal vitamin D 25 hydroxylase catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome.Biochem. Mol. Med. 58, 122–129.

    PubMed  CAS  Google Scholar 

  • Segura-Aguilar J and C Lind (1989) On the mechanism of Mn3+ induce neurotoxicity of dopamine: prevention of quinone derived oxygen toxicity by DT-diaphorase and superoxide dismutase.Chem. Biol. Interact. 72, 309–324.

    PubMed  CAS  Google Scholar 

  • Segura-Aguilar J, D Metodiewa and C Welch (1998) Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cyytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects.Biochim. Biophys. Acta 1381, 1–6.

    PubMed  CAS  Google Scholar 

  • Segura-Aguilar J, G Diaz-Veliz, S Mora and M Herrera-Marschitz (2002) Inhibition of DT-diaphorase is a requirement for Mn3+ to produce a 6-OH-dopamine like rotational behaviour.Neurotoxicity Res. 4, 127–131.

    CAS  Google Scholar 

  • Shoham S and MB Youdim (2000) Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases.Cell. Mol. Biol. 46, 743–760.

    PubMed  CAS  Google Scholar 

  • Siao CJ, SR Fernandez and SE Tsirka (2003) Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury.J. Neurosci. 23, 3234–3242.

    PubMed  CAS  Google Scholar 

  • Simantov R, A Binder, T Tratovitsky, M Tauber, S Gasbbay and S Porat (1996) Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the DA transporter.Neuroscience 74, 39–50.

    PubMed  CAS  Google Scholar 

  • Smythies J, A De Iuliis, L Zanatta and L Galzigna (2002) The biochemical basis of Parkinson’s disease: the role of catecholamine o-quinones: a review-discussion.Neurotoxicity Res. 4, 77–81.

    CAS  Google Scholar 

  • Sofic E, P Riederer, H Heinsen, H Beckmann, GP Reynolds, G Hebenstreit and MB Youdim (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain.J. Neural Transm. 74, 199–205.

    PubMed  CAS  Google Scholar 

  • Sofic E, W Paulus, K Jellinger, P Riederer and MB Youdim (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains.J. Neurochem. 56, 978–982.

    PubMed  CAS  Google Scholar 

  • Solano F, Vj Herring, Jc Garcia-Borron (2000) Neurotoxicity due to o-quinones: neuromelanin formation and possible mechanisms foro-quinone detoxification.Neurotoxicity Res. 1, 153–170.

    CAS  Google Scholar 

  • Sonsalla PK, WJ Nicklas and RE Heikkila (1989) Role for excitatory amino acids in methamphetamine-induced dopaminergic toxicity.Science 243, 398–400.

    PubMed  CAS  Google Scholar 

  • Sperk G, H Lassmann, H Baran, SJ Kish, F Seitelberger and O Hornykiewicz (1983) Kainic acid induced seizures: neurochemical and histopathological changes.Neuroscience 10, 1301–1315.

    PubMed  CAS  Google Scholar 

  • Struzynska L, M Walski, R Gadamski, B Dabrowska-Bouta and U Rafalowska (1997) Lead-induced abnormalities in blood-brain barrier permeability in experimental chronic toxicity.Mol. Chem. Neuropathol. 31, 207–224.

    PubMed  CAS  Google Scholar 

  • Sugama S, SA Wirz, AM Barr, B Conti, T Bartfai and T Shibasaki (2004) Interleukin-18 null mice show diminished microglial activation and reduced dopaminergic neuron loss following acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment.Neuroscience 128(2), 451–458.

    PubMed  CAS  Google Scholar 

  • Sugino T, K Nozaki, Y Takagi and N Hashimoto (1999) 3-Nitropropionic acid induces ischemic tolerance in gerbil hippocampusin vivo.Neurosci. Lett. 259, 9–12.

    PubMed  CAS  Google Scholar 

  • Sulzer D, J Bogulavsky, KE Larsen, G Behr, E Karatekin, MH Kleinman, N Turro, D Krantz, RH Edwards, LA Greene and L Zecca (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles.Proc. Natl. Acad. Sci. USA 97, 11869–11874.

    PubMed  CAS  Google Scholar 

  • Szabo C (1996) The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury.Shock 6, 79–88.

    PubMed  CAS  Google Scholar 

  • Szabo C (2003) Multiple pathways of peroxynitrite cytotoxicity.Toxicol. Lett. 140, 105–112.

    PubMed  Google Scholar 

  • Szabo C and H Ohshima (1997) DNA damage induced by peroxynitrite: subsequent biological effects.Nitric Oxide 1, 373–385.

    PubMed  CAS  Google Scholar 

  • Talpade DJ, JG Greene, DS Higgins and JT Greenamyre (2000)In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [3H]dihydrorotenone.J. Neurochem. 75, 2611–2621.

    PubMed  CAS  Google Scholar 

  • Tan S, Y Sagara, Y Liu, P Maher and D Schubert (1998) The regulation of reactive oxygen species production during programmed cell deathJ. Cell Biol. 141, 1423–1432.

    PubMed  CAS  Google Scholar 

  • Tapia R, L Medina-Ceja and F Peña (1999) On the relationship between extracellular glutamate, hyperexcitation and neurodegradation,in vivo.Neurochem. Int. 34, 23–31.

    PubMed  CAS  Google Scholar 

  • Taylor P (2001) Anticholinesterase agents, InThe Pharmacological Basis of Therapeutics (10th Edition (Hardman JG and LE Limbird, Eds.) (Mcmillan Press: New York, NY, USA), pp 175–191.

    Google Scholar 

  • Teitelbaum JS, RJ Zatorre, S Carpenter, D Gendron, AC Evans, A Gjedde and NR Cashman (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels [see comments].New Engl. J. Med. 322, 1781–1787.

    PubMed  CAS  Google Scholar 

  • Terland O, T Flatmark, A Tangeras and M Gronberg (1997) Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species.J. Mol. Cell Cardiol. 29, 1731–1738.

    PubMed  CAS  Google Scholar 

  • Thompson CM, JH Capdevila and HW Strobel (2000) Recombinant cytochrome P450 2D18 metabolism of dopamine and arachidonic acid.J. Pharmacol. Exp. Ther. 294, 1120–1130.

    PubMed  CAS  Google Scholar 

  • Tranzer JP and H Thoenen (1967) Ultramorphologische veranderungen der sympatischen nervendigunden der katze nach vorbehandlung mit 5- und 6-hydroxydopamin.Naunyn-Schmiedeberg’s Arch. Pharmakol. Exp. Pathol. 257, 73–75.

    CAS  Google Scholar 

  • Tsutsumi S, H Akaike, H Arimitsu, H Imai and N Kato (2002) Circulating corticosterone alters the rate of neuropathological and behavioral changes induced by trimethyltin in rats.Exp. Neurol. 173, 86–94.

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Post synaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system.Acta Physiol. Scand. 367, 69–93.

    CAS  Google Scholar 

  • Uversky VN (2004) Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration.Cell Tissue Res. 318(1), 225–241. Epub 2004 Jul 16.

    PubMed  CAS  Google Scholar 

  • Vaglini F, C Pardini, C Viaggi, C Bartoli, D Dinucci and GU Corsini (2004) Involvement of cytochrome P450 2E1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease.J. Neurochem. 91(2), 285–298.

    PubMed  CAS  Google Scholar 

  • van der Stelt M, HH Hansen, WB Veldhuis, PR Bar, K Nicolay, GA Veldink, JF Vliegenthart and HS Hansen (2003) Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases.Neurotoxicity Res. 5, 183–200.

    Google Scholar 

  • Velez-Pardo C, MJ Del Rio, H Verschueren, G Ebinger and G Vauguelin (1997) Dopamine and iron induce apoptosis in PC 12 cells.Pharmacol. Toxicol. 80, 76–84.

    PubMed  CAS  Google Scholar 

  • Vetulani J, L Antkiewicz-Michaluk, I Nalepa and M Sansone (2003) A possible physiological role for cerebral tetrahydroisoquinolines.Neurotoxicity Res. 5, 147–155.

    Google Scholar 

  • Wang W, L Shi, Y Xie, C Ma, W Li, X Su, S Huang, R Chen, Z Zhu, Z Mao, Y Han and M Li (2004) SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease.Neurosci. Res. 48(2), 195–202.

    PubMed  CAS  Google Scholar 

  • Whittington DL, ML Woodruff and RH Baisden (1988) The time-course of trmethyltin-induced fiber and terminal degeneration in hippocampus.Neurotoxicol. Teratol. 11, 21–33.

    Google Scholar 

  • Wilczok T, K Stepien, A Dzierzega-Lecznar, A Zajdel and A Wilczok (2000) Model neuromelanins as antioxidative agents during lipid peroxidation.Neurotoxicity Res. 1, 141–148.

    Google Scholar 

  • Xu G, MA Perez-Pinzon and TJ Sick (2003) Mitochondrial complex I inhibition produces selective damage to hippocampal subfield CA1 in organotypic slice cultures.Neurotoxicity Res. 5, 529–538.

    Google Scholar 

  • Xu Z, D Cawthon, KA McCastlain, W Slikker Jr and SF Ali (2004) Selective alterations of gene expression in mice induced by MPTP.Synapse. 55, 45–51.

    Google Scholar 

  • Youdim MB, Fridkin M, Zheng H (2004) Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases.J. Neural Transm. 111, 1455–1471. Epub 2004 Apr 20.

    PubMed  CAS  Google Scholar 

  • Zigmond MJ and KA Keefe (1998) 6-Hydroxydopamine as a tool for studying catecholamines in adult animals: lessons from the neostriatum, InHighly Selective Neurotoxins: Basic and Clinical Applications (Kostrzewa RM, Ed.) (Humana Press: Totowa, NJ, USA), pp 75–107.

    Google Scholar 

  • Ziv I, E Melamed, N Nardi, D Luria, A Achiron, D Offen and A Barzilai (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons-a possible novel pathogenetic mechanism in Parkinson’s disease.Neurosci. Lett. 170, 136–140.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Segura-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segura-Aguilar, J., Kostrzewa, R.M. Neurotoxins and neurotoxic species implicated in neurodegeneration. neurotox res 6, 615–630 (2004). https://doi.org/10.1007/BF03033456

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033456

Keywords

Navigation