Skip to main content
Log in

Binding of 4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]pyridinium ion (HPP+), a metabolite of haloperidol, to synthetic melanin: Implications for the dopaminergic neurotoxicity of HPP+

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The toxicity of 4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]pyridinium ion (HPP+), a metabolite of haloperidol, toward dopaminergic neurons was investigated. When HPP+ (~100 µM) was added to primary cultures prepared from rat embryonic mesencephalon for 1 h, the survivability of dopaminergic neurons decreased significantly, and this effect was not inhibited by the dopamine transporter (DAT) inhibitor GBR 12909. In addition, binding characteristics of HPP+ to neuromelanin, which is abundant in dopaminergic neurons, was evaluated using synthetic melanin. A binding analysis using the Scatchard method showed that there are two classes of binding sites: high affinity sites with a dissociation constant Kd1 of 20.2 nM, and low affinity sites with a Kd2 of 4.0 µM. HPP+ was released easily from synthetic melanin using phosphate buffer (pH 7.0), suggesting that this binding is reversible. The results suggest that the toxicity of HPP+ in dopaminergic neurons is due not to DAT-mediated uptake, but to the binding to neuromelanin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlasik B, KB Stepien and T Wilczok (1980) Interaction of drugs with ocular melaninin vivo.Exp. Eye Res. 30, 325–321.

    Article  PubMed  CAS  Google Scholar 

  • Avent KM, E Usuki, DWEyles, R Keeve, CJ Van der Schyf, N Castagnoli Jr and SM Pond (1996) Haloperidol and its tetrahydropyridine derivative (HPTP) are metabolized to potentially neurotoxic pyridinium species in the baboon.Life Sci. 59, 1473–1482.

    Article  PubMed  CAS  Google Scholar 

  • Avent KM, RR Riker, G Fraser, CJ Van der Schyf, E Usuki and SM Pond (1997) Metabolism of haloperidol to pyridinium species in patients receiving high doses intravenously: is HPTP an intermediate?Life Sci. 61, 2383–2390.

    Article  PubMed  CAS  Google Scholar 

  • Beasley CM, MA Dellva, RN Tamura, H Morgenstern, WM Glazer, K Ferguson and GD Tollefson (1999) Randomised double-blind comparison of the incidence of tardive dyskinesia in patients with schizophrenia during long-term treatment with olanzapine or haloperidol.Br. J. Psychiatry 174, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, S Dovero, C Prunier, P Ravenscroft, S Chalon, D Guilloteau, AR Crossman, B Bioulac, JM Brotchie and CE Gross (2001) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease.J. Neurosci. 21, 6853–6861.

    PubMed  CAS  Google Scholar 

  • Bloomquist J, E King, A Wright, C Mytilineou, K Kimura, K Castagnoli and N Castagnoli Jr (1994) 1-Methyl-4-phenylpyridinium-like neurotoxicity of a pyridinium metabolite derived from haloperidol: cell culture and neurotransmitter uptake studies.J. Pharmacol. Exp. Ther. 270, 822–830.

    PubMed  CAS  Google Scholar 

  • Di Monte DA, A McCormack, G Petzinger, AM Janson, M Quik and WJ Langston (2000) Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model.Mov. Disord. 15, 459–466.

    Article  PubMed  Google Scholar 

  • Eyles DW, KM Avent, TJ Stedman and SM Pond (1997) Two pyridinium metabolites of haloperidol are present in the brain of patients at post-mortem.Life Sci. 60, 529–534.

    Article  PubMed  CAS  Google Scholar 

  • Fang J, D Zuo and PH Yu (1995) Comparison of cytotoxicity of a quaternary pyridinium metabolite of haloperidol (HP+) with neurotoxin N-methyl-4-phenylpyridinium (MPP+) towards cultured dopaminergic neuroblastoma cells.Psychopharmacology 121, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • González-Polo RA, A Mora, N Clemente, G Sabio, F Centeno, G Soler and JM Fuentes (2001) Mechanisms of MPP+ incorporation into cerebellar granule cells.Brain Res. Bull. 56, 119–123.

    Article  PubMed  Google Scholar 

  • Gorrod JW and J Fang (1993) On the metabolism of haloperidol.Xenobiotica 23, 495–508.

    Article  PubMed  CAS  Google Scholar 

  • Halliday GM, SM Pond, H Cartwright, DA McRitchie, N Castagnoli Jr and CJ Van der Schyf (1999) Clinical and neuropathological abnormalities in baboons treated with HPTP, the tetrahydropridine analog of haloperidol.Exp. Neurol. 158, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, K Matsubara, F Kasuya, M Fukui, T Idzu and N Castagnoli Jr (1996) Effect of a pyridinium metabolite derived from haloperidol on the activities of striatal tyrosine hydroxylase in freely moving rats.Neurosci. Lett. 214, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, A Schultz, J Wiltfang, I Meineke, CH Gleiter, R Zöchling, K-W Boissl, F Leblhuber and P Riederer (1999) Persistence of haloperidol in human brain tissue.Am. J. Psychiatry 156, 885–890.

    PubMed  CAS  Google Scholar 

  • Larsson B, A Oskarsson and H Tjalve (1977) Binding of paraquat and diquat on melanin.Exp. Eye Res. 25, 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Marchese G, MA Casu, F Bartholini, S Ruiu, P Saba, GL Gessa and L Pani (2002) Sub-chronic treatment with classical but not atypical antipsychotics produces morphological changes in rat nigrostriatal dopaminergic neurons directly related to ‘early onset’ vacuous chewing.Eur. J. Neurosci. 15, 1187–1196.

    Article  PubMed  Google Scholar 

  • Pileblad E and A Carlsson (1988) Studies on the acute and long-term changes in dopamine and noradrenaline metabolism in mouse brain following administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Pharmacol. Toxicol. 62, 213–222.

    PubMed  CAS  Google Scholar 

  • Prota G (1980) Recent advances in the chemistry of melanogenesis in mammals.J. Invest. Dermatol. 75, 122–127.

    Article  PubMed  CAS  Google Scholar 

  • Roberts RC, M Force and L Kung (2002) Dopaminergic synapses in the matrix of the ventrolateral striatum after chronic haloperidol treatment.Synapse 45, 78–85.

    Article  PubMed  CAS  Google Scholar 

  • Rollema H, M Skolnik, J D’Engelbronner, K Igarashi, E Usuki and N Castagnoli Jr (1993) MPP+-like neurotoxicity of a pyridinium metabolite derived from haloperidol:in vivo microdialysis andin vitro mitochondrial studies.J. Pharmacol. Exp. Ther. 268, 380–387.

    Google Scholar 

  • Saporito MS, RE Heikkila, SK Youngser, WJ Nicklas and MG Herbert (1991) Dopaminergic neurotoxicity of 1-methyl-4-phenylpiridinium analogs in cultured neurons: relationship to the dopamine uptake system and inhibition of mitochondrial respiration.J. Pharmacol. Exp. Ther. 260, 1400–1409.

    Google Scholar 

  • Sawada H, M Ibi, T Kihara, M Urushitani, A Akaike and S Shimahama (1998) Estradiol protects mesencephalic dopaminergic neurons from oxidative stress-induced neuronal death.J. Neurosci. Res. 54, 707–719.

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, M Ibi, T Kihara, M Urushitani, K Honda, M Nakanishi, A Akaike and S Shimahama (2000) Mechanisms of antiapoptotic effects of estrogen in nigral dopaminergic neurons.FASEB J. 14, 1202–1214.

    PubMed  CAS  Google Scholar 

  • Stepien KB and T Wilczok (1982) Studies of the mechanism of chloroquine binding to synthetic dopa-melanin.Biochem. Pharmacol. 31, 3359–3365.

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam B, H Rollema, T Woolf, HA Whiteford, HG Fouda and N Castagnoli Jr (1990) Identification of potentially neurotoxic pyridinium metabolite of haloperidol in rats.Biochem. Biophys. Res. Commun. 166, 238–244.

    Article  PubMed  CAS  Google Scholar 

  • Subramanyam B, SM Pond, DW Eyles, HA Whiteford, HG Fouda and N Castagnoli Jr (1991) Identification of potentially neurotoxic pyridinium metabolite in the urine of schizophrenic patients treated with haloperidol.Biochem. Biophys. Res. Commun. 181, 573–578.

    Article  PubMed  CAS  Google Scholar 

  • Swan GA and A Waggott (1970) Studies related to the chemistry of melanins. X. Quantitative assessment of different types of units present in dopa-melanin.J. Chem. Soc. 10, 1409–1418.

    CAS  Google Scholar 

  • Tipson KF and TP Singer (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds.J. Neurochem. 61, 1191–1206.

    Article  Google Scholar 

  • Usuki E, CJ Van der Schyf and N Castagnoli Jr (1998) Metabolism of haloperidol and its tetrahydropyridine dehydration product HPTP.DrugMetab. Rev. 30, 809–826.

    CAS  Google Scholar 

  • Van der Schyf CJ, IC Dormehl, DW Oliver, N Hugo, R Keeve, HW Muller-Gartner, SM Pond and N Castagnoli Jr (1996) Long-term treatment with the tetrahydropyridine analog (HPTP) of haloperidol influences dopamine ligand binding in baboon brain.Brain Res. Mol. Brain Res. 43, 251–258.

    Article  PubMed  Google Scholar 

  • Wright AM, J Bempong, ML Kirby, RL Barlow and JR Bloomquist (1998) Effects of haloperidol metabolites on neurotransmitter uptake and release: possible role in neurotoxicity and tardive dyskinesia.Brain Res. 788, 215–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Saji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawashima, H., Iida, Y., Kitamura, Y. et al. Binding of 4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]pyridinium ion (HPP+), a metabolite of haloperidol, to synthetic melanin: Implications for the dopaminergic neurotoxicity of HPP+ . neurotox res 6, 535–542 (2004). https://doi.org/10.1007/BF03033449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033449

Keywords

Navigation