Skip to main content
Log in

Purinergic-receptor oligomerization: Implications for neural functions in the central nervous system

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

It is becoming clear that the functions of G protein-coupled receptors (GPCRs), the largest family of plasma membrane-localized receptors, are regulated by direct oligomeric formation between GPCRs, as either homo-or hetero-oligomers. This review article explores the mechanistic implications of GPCR dimerization, especially among purinergic receptors, adenosine receptors and P2 receptors, which play critical roles in the regulation of neuro-transmission in the central nervous system. Briefly, adenosine receptors are able to form a heteromeric complex with P2 receptors that generates an adenosine receptor with P2 receptor-like agonistic pharmacology. This mechanism may be used to fine-tune purinergic inhibition locally at sites where there is a particular oligomerization structure between purinergic receptors, and to explain the undefined adenosine-like purinergic functions of adenine nucleotides. Purinergic receptors also form oligomers with GPCRs of other families present in the brain, such as dopamine receptors and metabotropic glutamate receptors, to alter the functional properties. The effect of GPCR oligomerization on receptor functions is thus considered as an important system in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbdAlla S, H Lother and U Quitterer (2000) AT1-receptor het-erodimers show enhanced G-protein activation and altered receptor sequestration.Nature 407, 94–98.

    Article  PubMed  CAS  Google Scholar 

  • AbdAlla S, H Lother, A el Massiery and U Quitterer (2001) Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness.Nat. Med. 7, 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  • Angers S, A Salahpour and M Bouvier (2002) Dimerization, an emerging concept for G protein-coupled receptor ontogeny and function.Annu. Rev. Pharmacol. Toxicol. 42, 409–435.

    Article  PubMed  CAS  Google Scholar 

  • Barajas-Lopez C, MJ Muller, B Prieto-Gomez and R Espinosa-Luna (1995) ATP inhibits the synaptic release of acetylcholine in submucosal neurons.J. Pharmacol. Exp. Ther. 274, 1238–1245.

    PubMed  CAS  Google Scholar 

  • Ciruela F, V Casado, J Mallol, EI Canela, C Lluis and R Franco (1995) Immunological identification of A1 adenosine receptors in brain cortex.J. Neurosci. Res. 42, 818–828.

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, M Escriche, J Burgueno, E Angulo, V Casado, MM Soloviev, EI Canela, J Mallol, WY Chan, C Lluis, RA McIlhinney and R Franco (2001) Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes.J. Biol. Chem. 276, 18345–18351.

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, AM Sebastiao and JA Ribeiro (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors.J. Neurosci. 18, 1987–1995.

    PubMed  CAS  Google Scholar 

  • Eidne KA, KM Kroeger and AC Hanyaloglu (2002) Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells.Trends Endocrinol. Metab. 13, 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Ferre S and K Fuxe (2000) Adenosine as a volume transmission signal. A feedback detector of neuronal activation.Prog. Brain Res. 125, 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Ferre S, M Karcz-Kubicha, BT Hope, P Popoli, J Burgueno, MA Gutierrez, V Casado, K Fuxe, SR Goldberg, C Lluis, R Franco and F Ciruela (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors, implications for striatal neuronal function.Proc. Natl. Acad. Sci. USA 99, 11940–11945.

    Article  PubMed  CAS  Google Scholar 

  • Gama L, SG Wilt and GE Breitwieser (2001) Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons.J. Biol. Chem. 276, 39053–39059.

    Article  PubMed  CAS  Google Scholar 

  • George SR, BF O’Dowd and SP Lee (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery.Nat. Rev. Drug Discov. 1, 808–820.

    Article  PubMed  CAS  Google Scholar 

  • Gines S, J Hillion, M Torvinen, S Le Crom, V Casado, EI Canela, S Rondin, JY Lew, S Watson, M Zoli, LF Agnati, P Verniera, C Lluis, S Ferre, K Fuxe and R Franco (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromer-ic complexes.Proc. Natl. Acad. Sci. USA 97, 8606–8611.

    Article  PubMed  CAS  Google Scholar 

  • Hauser RA, JP Hubble and DD Truong (2003) Randomized trial of the adenosine A2A receptor antagonist istradefylline in advanced PD.Neurology 61, 297–303.

    PubMed  CAS  Google Scholar 

  • Hillion J, M Canals, M Torvinen, V Casado, R Scott, A Terasmaa, A Hansson, S Watson, ME Olah, J Mallol, EI Canela, M Zoli, LF Agnati, CF Ibanez, C Lluis, R Franco, S Ferre and K Fuxe (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem.277, 18091–18097.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi Y, T Nishizaki, M Mori and Y Okada (1996) Adenosine activates the K+ channel and enhances cytosolic Ca2+ releasevia a P2Y purinoceptor in hippocampal neurons.Eur. J. Pharmacol. 304, 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Joly E, B Houle, P Dionne, S Taylor and L Menard. Bioluminescence Resonance Energy Transfer (BRET2). Principles, Applications, and Products, inApplication Note # BRT-001 (PerkinElmer Inc.).

  • Kamiya T, O Saitoh, K Yoshioka and H Nakata (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells.Biochem. Biophys. Res. Commun. 306, 544–549.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi S and K Inoue (1997) Inhibition by ATP of calcium oscillations in rat cultured hippocampal neurones.B r. J. Pharmacol. 122, 51–58.

    Article  CAS  Google Scholar 

  • Lee SP, BF O’Dowd and SR George (2003) Homo- and hetero-oligomerization of G protein-coupled receptors.Life Sci. 74, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Masino SA, L Diao, P Illes, NR Zahniser, GA Larson, B Johansson, BB Fredholm and TV Dunwiddie (2002) Modulation of hip-pocampal glutamatergic transmission by ATP is dependent on adenosine A1 receptors.J. Pharmacol. Exp. Ther. 303, 356–363.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Fernandez V, RD Andrew and C Barajas-Lopez (2000) ATP inhibits glutamate synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices.J. Pharmacol. Exp. Ther. 293, 172–179.

    PubMed  CAS  Google Scholar 

  • Milligan G, D Ramsay, G Pascal and JJ Carrillo (2003) GPCR dimerisation.Life Sci. 74, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Moore D, J Chambers, H Waldvogel, R Faull and P Emson (2000) Regional and cellular distribution of the P2Y1 purinergic receptor in the human brain, striking neuronal localisation.J. Comp. Neurol. 421, 374–384.

    Article  PubMed  CAS  Google Scholar 

  • Nakata H (1989) Purification of A1 adenosine receptor from rat brain membranes.J. Biol. Chem. 264, 16545–16551.

    PubMed  CAS  Google Scholar 

  • Nomoto M, S Kaseda, S Iwata, T Shimizu, T Fukuda and S Nakagawa (2000) The metabolic rate and vulnerability of dopaminergic neurons, and adenosine dynamics in the cerebral cortex, nucleus accumbens, caudate nucleus, and putamen of the common marmoset.J. Neurol. 247 Suppl 5, V16-V22.

    Article  PubMed  Google Scholar 

  • Ochiishi T, L Chen, A Yukawa, Y Saitoh, Y Sekino, T Arai, H Nakata and H Miyamoto (1999) Cellular localization of adeno-sine A1 receptors in rat forebrain, immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody.J. Comp. Neurol. 411, 301–316.

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V and G Burnstock (1998) Receptors for purines and pyrimidines.Pharmacol. Rev. 50, 413–492.

    PubMed  CAS  Google Scholar 

  • Shinozuka K, RA Bjur and DP Westfall (1988) Characterization of prejunctional purinoceptors on adrenergic nerves of the rat caudal artery.Naunyn Schmiedeberg’s Arch. Pharmacol. 338, 221–227.

    Article  CAS  Google Scholar 

  • Smith AD, DJ Cheek, IL Buxton and DP Westfall (1997) Competition of adenine nucleotides for a 1,3-[3H]-dipropyl-8-cyclopentylxanthine binding site in rat vas deferens.Clin. Exp. Pharmacol. Physiol. 24, 492–497.

    Article  PubMed  CAS  Google Scholar 

  • Song SL and SH Chueh (1996) P2 purinoceptor-mediated inhibition of cyclic AMP accumulation in NG108-15 cells.Brain Res. 734, 243–251.

    Article  PubMed  CAS  Google Scholar 

  • von Kugelgen I, L Spath and K Starke (1992) Stable adenine nucleotides inhibit [3H]-noradrenaline release in rabbit brain cortex slices by direct action at presynaptic adenosine A1-receptors.Naunyn Schmiedeberg’s Arch. Pharmacol. 346, 187–196.

    Article  Google Scholar 

  • Wang L, L Karlsson, S Moses, A Hultgardh-Nilsson, M Andersson, C Borna, T Gudbjartsson, S Jern and D Erlinge (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells.J. Cardiovasc. Pharmacol. 40, 841–853.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, DW Piston and CH Johnson (1999) A bioluminescence resonance energy transfer (BRET) system, application to interacting circadian clock proteins.Proc. Natl. Acad. Sci. USA 96, 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K and H Nakata (2004) ATP- and adenosine-mediated signaling in the central nervous system, purinergic receptor complex, generating adenine nucleotide-sensitive adenosine receptors.J. Pharmacol. Sci. 94, 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, A Matsuda and H Nakata (2001a) Pharmacology of a unique adenosine binding site in rat brain using a selective lig-and.Clin. Exp. Pharmacol. Physiol. 28, 278–284.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, O Saitoh and H Nakata (2001b) Heteromeric association creates a P2Y-like adenosine receptor.Proc. Natl. Acad. Sci. USA 98, 7617–7622.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, R Hosoda, Y Kuroda and H Nakata (2002a) Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains.FEBS Lett. 531, 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, O Saitoh and H Nakata (2002b) Agonist-promoted het-eromeric oligomerization between adenosine A1 and P2Y1 receptors in living cells.FEBS Lett. 523, 147–151.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Nakata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakata, H., Yoshioka, K. & Kamiya, T. Purinergic-receptor oligomerization: Implications for neural functions in the central nervous system. neurotox res 6, 291–297 (2004). https://doi.org/10.1007/BF03033439

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033439

Keywords

Navigation