Skip to main content

Advertisement

Log in

The sodium channel blocker RS100642 reverses down-regulation of the sodium channel α-subunit Nav 1.1 expression caused by transient ischemic brain injury in rats

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In this study we evaluated the expression of five sodium channel (NaCh) α-subunit genes after transient middle cerebral artery occlusion (MCAo) in the rat and the effects of treatment with the NaCh blocker and experimental neuroprotective agent RS100642 as compared to the prototype NaCh blocker mexiletine. The expression of Nav 1.1, Nav 1.2, Nav 1.3, Nav 1.7, Nav 1.8 and the housekeeping gene β-actin were studied in vehicle or drug-treated rats at 6, 24 and 48 h post-MCAo using real-time quantitative RT-PCR. RS100642 (1 mg/kg), mexiletine (10 mg/kg), or vehicle (1 ml/kg) was injected (i.v.) at 30 min, 2, 4, and 6 h post-injury. Following MCAo only the Nav 1.1. and Nav 1.2 genes were significantly down-regulated in the ipsilateral hemisphere of the injured brains. RS100642 treatment significantly reversed the down-regulation of Nav 1.1 (but not Nav 1.2) at 24–48 h post-injury. Mexiletine treatment, on the other hand, had no significant effect on the down-regulation of either gene. These findings demonstrate that treatment with a neuroprotective dose of RS100642 significantly reverses the down-regulation of Nav 1.1 caused by ischemic brain injury and suggests that RS100642 selectively targets the Nav 1.1 α-subunit of the NaCh. Furthermore, our findings strengthen the hypothesis that ischemic injury may produce selective depletion of voltage-gated NaChs, and suggest that the Nav 1.1 NaCh α-subunit may play a key role in the neuronal injury/recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akopian AN, L Siviltti and JN Wood (1996) A tetrodotoxin-resistant voltage-gated sodium channel expresed by sensory neurons.Nature 379, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Auld VJ, AL Goldin, DS Kraft, J Marshall, JM Dunn, WA Catterall, HA Lester, N Davidson and RJ Dunn (1988) A rat brain Na+ channel alpha subunit with novel gating properties.Neuron 1, 449–461.

    Article  PubMed  CAS  Google Scholar 

  • Berti R, AJ Williams, JR Moffett, SL Hale, LC Velarde, PJ Elliott, C Yao, JR Dave and FC Tortella (2002) Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury.J. Cereb. Blood Flow Metab. 22, 1068–1079.

    Article  PubMed  CAS  Google Scholar 

  • Carter AJ (1998) The importance of voltage-dependent sodium channels in cerebral ischemia.Amino Acids 14, 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1992) Cellular and molecular biology of voltage-gated sodium channels.Physiol. Rev. 72 (suppl. 4), 15S-48S.

    Google Scholar 

  • Chen J, SH Graham, M Nakayama, RL Zhu, K Jin, RA Settler and RP Simon (1997) Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia.J. Cereb. Blood Flow Metab. 17, 2–10.

    Article  PubMed  CAS  Google Scholar 

  • Cherubini E, Y Ben-Ari and K Krnjevic (1989) Anoxia produces smaller changes in synaptic transmission, membrane potential and input resistance in immature rat hippocampus.J. Neurophysiol. 62, 882–895.

    PubMed  CAS  Google Scholar 

  • Choi DW (1990) Cerebral hypoxia: some new approaches and unanswered questions.J. Neurosci. 10, 2493–2501.

    PubMed  CAS  Google Scholar 

  • Cummins TR, C Jiang and GG Haddad (1993) Human neocortical excitability is decreased during anoxia via sodium channel modulation.J. Clin. Invest. 91, 608–615.

    Article  PubMed  CAS  Google Scholar 

  • Dargent B and F Couraud (1990) Down-regulation of voltagedependent sodium channels initiated by sodium influx in developing neurons.Proc. Natl. Acad. Sci. USA 87, 5907–5911.

    Article  PubMed  CAS  Google Scholar 

  • Dave J, Y Lin, H Ved, M Koenig, L Clapp, J Hunter and F Tortella (2001) RS-100642-198, a novel sodium channel blocker, provides differential neuroprotection against hypoxia/hypoglycemia, veratridine or glutamate-mediated neurotoxicity in primary cultures of rat cerebellar neurons.Neurotoxicity Res. 3, 381–395.

    Article  CAS  Google Scholar 

  • Dave J, C Yao, JR Moffett, R Berti, M Koenig and FC Tortella (2003) Down-regulation of sodium channel Nav 1.1 expression by veratridine and its reversal by a novel sodium channel blocker, RS100642, in primary neuronal cultures.Neurotoxicity Res. 5, 213–220.

    Google Scholar 

  • Erecinska M and IA Silver (1989) ATP and brain function.J. Cereb. Blood Flow Metab. 9, 2–19

    PubMed  CAS  Google Scholar 

  • Gautron S, G Dos Santos, D Pinto-henrique, A Koulakoff, F Gros and Y Berwalk-Netter (1992) The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression.Proc. Natl. Acad. Sci. USA 89, 7272–7276.

    Article  PubMed  CAS  Google Scholar 

  • Gorter J, J Petrozzino, EM Aronica, DM Rosenbaum, T Optitz, MV Bennett, JA Connor and RS Zukin (1997) Global ischemia induces down-regulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil.J. Neurosci. 17, 6179–6188.

    PubMed  CAS  Google Scholar 

  • Jiang C and GG Haddad (1992) Differential responses of neocortical neurons to glucose and/or O2 deprivation in the human and rat.J. Neurophysiol. 68, 2165–2173.

    PubMed  CAS  Google Scholar 

  • Kawamata T, EK Speliotes and SP Finklestein (1997) The role of polypeptide growth factors in recovery from stroke.Adv. Neurol. 73, 377–382.

    PubMed  CAS  Google Scholar 

  • Kayano T, M Noda, V Flockerzi, H Takahashi and S Numa (1988) Primary structure of rat brain sodium channel III deduced from the cDNA sequence.FEBS Lett. 228, 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Neumann-Haefelin T, C Wiessner, P Vogel, T Back and KA Hossmann (1994) Differential expression of the immediate early genes c-fos, c-jun, jun B and NGFL-B in the rat brain following transient forebrain ischemia.J. Cereb. Blood Flow Metab. 14, 206–216.

    PubMed  CAS  Google Scholar 

  • Noda M, S Shimizu, T Tanabe, T Takai, T Kayano, T Ikeda, H Takahashi, H Nakayama, Y Kanaoka, N Minaminoet al. (1984) Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence.Nature 312(5990), 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Noda M, T Ikeda, T Kayano, H Suzuki, H Takeshima, M Kurasaki, H Takahashi and S Numa (1986) Existence of distinct sodium channel messenger RNAs in rat brain.Nature 320(6058), 188–192

    Article  PubMed  CAS  Google Scholar 

  • Novakovic SD, RM Eglen and JC Hunter (2001) Regulation of Na+ channel distribution in the nervous system.Trends Neurosci. 24, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Novakovic SD, R Tzoumaka, JG McGivern, M Haraguchi, L Sangameswaran, KR Gogas, RM Eglen and JC Hunter (1998) Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions.J. Neurosci. 18, 2174–2187.

    PubMed  CAS  Google Scholar 

  • Obrenovitch TP (1995) The ischemic penumbra: twenty years on.Cerebrovasc. Brain Metab. Rev. 7, 297–322.

    PubMed  CAS  Google Scholar 

  • Perez-Pinzon MA, M Rosenthal, TJ Sick, PL Lutz, J Pabbo and D Mash (1992) Down-regulation of sodium channels during anoxia: a putative survival strategy of turtle brain.Am. J. Physiol. 262, R712-R715.

    PubMed  CAS  Google Scholar 

  • Rataud J, F Debanot, V Mary, J Pratt, JM Stutzmann, FS Silverstein, K Buchanan, C Hudson and MV Johnston (1994) Comparative study of voltage-sensitive sodium channel blockers in focal ischemia and electric convulsions in rodents.Neurosci. Lett. 172, 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Sangameswaran L, SG Delgado, LM Fish and BD Koch (1996) Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neuron.J. Biol. Chem. 271, 5953–5956.

    Article  PubMed  CAS  Google Scholar 

  • Sangameswaran L, LM Fish, BD Koch, DK Rabert, SG Delgado, M Ilnicke, LB Jakeman, S Novakovic, K Wong, P Sze, E Tzoumaka, GR Stewart, RC Herman, H Chan, RM Eglen and JC Hunter (1997) A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia.J. Biol. Chem. 272, 14805–14809.

    Article  PubMed  CAS  Google Scholar 

  • Savitz SI and DM Rosenbaum (1999) Gene expression after cerebral ischemia.Neuroscientist 5, 238–253.

    Article  CAS  Google Scholar 

  • Schaller KL, DM Krzemien, PJ Yarowsky, BK Krueger and JH Caldwell (1995) A novel, abundant sodium channel expressed in neurons and glia.J. Neurosci. 15, 3231–3242.

    PubMed  CAS  Google Scholar 

  • Stys PK (1998) Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeurics.J. Cereb. Blood Flow Metab. 18, 2–25.

    Article  PubMed  CAS  Google Scholar 

  • Tortella F, P Britton, A Williams, X Lu and A Newman (1999) Neuroprotection (focal ischemia) and neurotoxicity (electroencephalographic) studies in rats with AHN649, a 3-amino analog of dextromethorphan and low affinity NMDA antagonist.J. Pharmacol. Exp. Ther. 291, 399–408.

    PubMed  CAS  Google Scholar 

  • Waxman SG, JD Kocsis and JA Black (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and reexpressed following axotomy.J. Neurophysiol. 72, 466–470.

    PubMed  CAS  Google Scholar 

  • Williams AJ and FC Tortella (2002) Neuroprotective effects of the sodium channel blocker RS100642 and attenuation of ischemia-induced brain seizures in the rat.Brain Res. 932, 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Xia Y and GG Haddad (1994) Postnatal development of voltage-sensitive Na+ channels in rat brain.J. Comp. Neurol. 345, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Yao C, AJ Williams, P Cui, R Berti, JC Hunter, FC Tortella and JR Dave (2002) Differential pattern of expression of voltage-gated sodium channel genes following ischemic brain injury in rats.Neurotoxicity Res. 4, 67–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Dave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, C., Williams, A.J., Lu, X.C.M. et al. The sodium channel blocker RS100642 reverses down-regulation of the sodium channel α-subunit Nav 1.1 expression caused by transient ischemic brain injury in rats. neurotox res 5, 245–253 (2003). https://doi.org/10.1007/BF03033382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033382

Keywords

Navigation