Neurotoxicity Research

, Volume 5, Issue 1–2, pp 139–145 | Cite as

Striatal glutamatergic mechanisms and extrapyramidal movement disorders

  • Thomas N. Chase
  • Francesco Bibbiani
  • Justin D. Oh
Article

Abstract

The nonphysiologic stimulation of striatal dopaminergic receptors, as a result of disease- or drug-related denervation or intermittent excitation, triggers adaptive responses in the basal ganglia which contribute to the appearance of parkinsonian symptoms and later to the dyskinesias and other alterations in motor response associated with dopaminergic therapy. Current evidence suggests that these altered responses involve activation of signal transduction cascades in striatal medium spiny neurons linking dopaminergic to coexpressed ionotropic glutamatergic receptors of theN-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) classes. These intraneuronal signaling pathways appear capable of modifying the phosphorylation state of NMDA and AMPA receptor subunits; resultant sensitization enhances cortical glutamatergic input which in turn modifies striatal output in ways that compromise motor behavior. The regulation of these spiny neuron glutamate receptors can also be affected by the activation state of coexpressed nondopaminergic receptors as well as by changes associated with Huntington's disease. These observations lend new insight into molecular mechanisms contributing to the integration of synaptic inputs to spiny neurons. They also suggest novel approaches to the pharmacotherapy of extrapyramidal motor dysfunction.

Keywords

AMPA Huntington disease lonotropic receptor LTP, Medium spiny neuron NMDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlskog JE and MD Muenter (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature.Mov. Disord. 16, 448–458.PubMedCrossRefGoogle Scholar
  2. Ahn S, DD Ginty and DJ Linden (1999) A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB.Neuron 23, 559–568.PubMedCrossRefGoogle Scholar
  3. Andersson M, A Hilbertson and MA Cenci (1999) Striatal fosB expression is causally linked with L-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease.Neurobiol. Dis. 6, 461–474.PubMedCrossRefGoogle Scholar
  4. Anglade P, A Mouatt-Prigent, Y Agid and E Hirsch (1996) Synaptic plasticity in the caudate nucleus of patients with Parkinson's disease.Neurodegeneration 5, 121–128.PubMedCrossRefGoogle Scholar
  5. Bartsch D, A Casadio, KA Karl, P Serodio and ER Kandel (1998) CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation.Cell 95, 211–223.PubMedCrossRefGoogle Scholar
  6. Bayer KU, P De Koninck, AS Leonard, JW Hell and H Schulman (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation.Nature 411, 801–805.PubMedCrossRefGoogle Scholar
  7. Bibb JA, JS Chen, JR Taylor, P Svenningsson, A Nishi, GL Snyder, Z Yan, ZK Sagawa, CC Ouimet, AC Nairn, EJ Nestler and P Greengard (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5.Nature 410, 376–380.PubMedCrossRefGoogle Scholar
  8. Blanchet PJ, LV Metman, MM Mouradian and TN Chase (1996) Acute pharmacologic blockade of dyskinesias in Parkinson's disease.Mov. Disord. 11, 580–581.PubMedCrossRefGoogle Scholar
  9. Blanchet PJ, SM Papa, LV Metman, MM Mouradian and TN Chase (1997) Modulation of levodopa-induced motor response complications by NMDA antagonists in Parkinson's disease.Neurosci. Biobehav. Rev. 21, 447–453.PubMedCrossRefGoogle Scholar
  10. Blanchet PJ, S Konitsiotis and TN Chase (1998) Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys.Mov. Disord. 13, 798–802.PubMedCrossRefGoogle Scholar
  11. Blanchet PJ, S Konitsiotis, N Whitmore, R Woodward and TN Chase (1999) Different effects of subunit specific NMDA antagonists in parkinsonian monkeys.J. Pharmacol. Exp. Ther. 290, 1034–1040.PubMedGoogle Scholar
  12. Cain DP (1997) LTP, NMDA, genes and learning.Curr. Opin. Neurobiol. 7, 235–242.PubMedCrossRefGoogle Scholar
  13. Calabresi P, P Giacomini, D Centonze and G Bernardi (2000) Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity?Ann Neurol. 47 (4 Suppl 1), S60-S8.PubMedGoogle Scholar
  14. Cenci MA, CS Lee and A Björklund (1998) L-Dopa-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin and glutamic acid decarboxylase mRNA.Eur. J. Neurosci. 10, 2694–2706.PubMedCrossRefGoogle Scholar
  15. Cenci MA, A Tranberg, M Andersson and A Hilbertson (1999) Changes in the regional and compartmental distribution of FodB-and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic L-dopa treatment.Neuroscience 94, 515–527.PubMedCrossRefGoogle Scholar
  16. Centonze D, B Picconi, P Gubellini, G Bernardi and P Calabresi (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum.Eur. J. Neurosci. 6, 1071–1077.CrossRefGoogle Scholar
  17. Cepeda C and MS Levine (1998) Dopamine andN-methyl-D-aspartate receptor interactions in the neostriatum.Dev. Neurosci. 20, 1–18PubMedCrossRefGoogle Scholar
  18. Cervo L and R Samanin (1996) Effects of dopaminergic and glutamatergic receptor antagonists on the establishment and expression of conditioned locomotion to cocaine in rats.Brain Res. 731, 31–38.PubMedCrossRefGoogle Scholar
  19. Chase TN and JD Oh (2000a) Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism.Trends Neurosci. 23, S86-S91.PubMedCrossRefGoogle Scholar
  20. Chase TN and JD Oh (2000b) Striatal mechanisms and pathogenesis of parkinsonian signs and motor complications.Ann. Neurol. 4 (Suppl 1), S122-S129.Google Scholar
  21. Chase TN, JD Oh and S Konitsiotis (2000) Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms.J. Neurol. 247 (Suppl 2), 36–42.Google Scholar
  22. Chen Q and A Reiner (1996) Cellular distribution of the NMDA receptor NR2A/2B subunits in the rat striatum.Brain Res. 743, 346–352.PubMedCrossRefGoogle Scholar
  23. Clarke CE, MA Sambrook, IJ Mitchell and ARH Crossman (1987) Levodopa-induced dyskinesia and response fluctuations in primates rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).J. Neurol. Sci. 78, 273–280.PubMedCrossRefGoogle Scholar
  24. Crump FT, KS Dillman and AM Craig (2001) cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors.J. Neurosci. 21, 5079–5088.PubMedGoogle Scholar
  25. Danysz W, CG Parons, J Kornhuber, WJ Schmidt and G Quack (1997) Amino-adamentanes as NMDA receptor antagonists and antiparkinsonian agents-preclinical studies.Neurosci. Biobehav. Rev. 21, 455–468.PubMedCrossRefGoogle Scholar
  26. Das S, M Grunert, L Williams and SR Vincent (1997) NMDA and D1 receptors regulate the phosphorylation of CREB and the induction of c-fos in striatal neurons in primary culture.Synapse 25, 227–233.PubMedCrossRefGoogle Scholar
  27. Del Dotto P, N Pavese, G Gambaccini, S Bernardini, LV Metman, TN Chase and U Bonuccelli (2001) Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study.Mov. Disord. 16, 515–520.PubMedCrossRefGoogle Scholar
  28. Dunah AW and DG Standaert (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane.J. Neurosci. 21, 5546–5558.PubMedGoogle Scholar
  29. Engber TM, Z Susel, S Kuo, CR Gerfen and TN Chase (1991) Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats.Brain Res. 552, 113–118.PubMedCrossRefGoogle Scholar
  30. Engber TM, RC Boldry, S Kuo and TN Chase (1992) Dopaminergic modulation of striatal neuropeptides, differential effects of D1 and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin.Brain Res. 581, 261–268.PubMedCrossRefGoogle Scholar
  31. Engber TM, SM Papa, RC Boldry and TN Chase (1994) NMDA receptor blockade reverses motor response alterations induced by levodopa.Neuroreport 5, 2586–2588.PubMedCrossRefGoogle Scholar
  32. Freund TF, JF Powell and AD Smith (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines.Neuroscience 4, 1189–1215.CrossRefGoogle Scholar
  33. Gerfen CR (1992) The neostriatal mosiac: multiple levels of compartmental organization in the basal ganglia.Ann. Rev. Neurosci. 15, 285–320.PubMedCrossRefGoogle Scholar
  34. Gerfen CR, TM Engber, LC Mahan, Z Susel, TN Chase, FJ Monsma Jr and DR Sibley (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons.Science 250, 1429–1432.PubMedCrossRefGoogle Scholar
  35. Ginty DD (1997) Calcium regulation of gene expression: isn't that spatial?Neuron 2, 183–186.CrossRefGoogle Scholar
  36. Gomez-Mancilla B and PJ Bedard (1993) Effect of nondopaminergic drugs on L dopa-induced dyskinesias in MPTP-treated monkeys.Clin. Neuropharmacol. 16, 418–427.PubMedCrossRefGoogle Scholar
  37. Gonzalez GA, P Menzel, J Leonard, WH Fischer and MR Montminy (1991) Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB.Mol. Cell. Biol. 11, 1306–1312.PubMedGoogle Scholar
  38. Goto S, A Hirano A and RR Rojas-Corona (1989) Immunohistochemical visualization of afferent nerve terminals in human globus pallidus and its alteration in neostriatal neurodegenerative disorders.Acta Neuropathol. (Berl.) 78, 543–550.CrossRefGoogle Scholar
  39. Graybiel AM (1998) The basal ganglia and chunking of action repertoires.Neurobiol. Learn. Mem. 1, 119–136.CrossRefGoogle Scholar
  40. Graybiel AM (2000) The basal ganglia.Curr. Biol. 14, R509-R511.CrossRefGoogle Scholar
  41. Greengard P, PB Allen and AC Nairn (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade.Neuron 23, 435–447.PubMedCrossRefGoogle Scholar
  42. Grosshans DR and MD Browning (2001) Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor.J. Neurochem. 76, 737–744.PubMedCrossRefGoogle Scholar
  43. Gurd JW (1997) Protein tyrosine phosphorylation: Implications for synaptic function.Neurochem. Int. 31, 635–649.PubMedCrossRefGoogle Scholar
  44. Hollmann M and S Heinemann (1994) Cloned glutamate receptors.Ann. Rev. Neurosci. 17, 31–108.PubMedCrossRefGoogle Scholar
  45. Hope BT, HE Nye, MB Kelz, DW Self, MJ Ladarola, Y Nakabeppu, RS Duman and EJ Nestlet (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments.Neuron 13, 1235–1244.PubMedCrossRefGoogle Scholar
  46. Hornykiewicz O (1998) Biochemical aspects of Parkinson's disease.Neurology 51, S2-S9.PubMedGoogle Scholar
  47. Hu SC, J Chrivia and A Ghosh (1999) Regulation of CBP-mediated transcription by neuronal calcium signaling.Neuron 22, 799–808.PubMedCrossRefGoogle Scholar
  48. Huang EP and CF Stevens (1998) The matter of mind: molecular control of memory.Essays Biochem. 33, 165–178.PubMedGoogle Scholar
  49. Impey S, DM Smith, K Obrietan, R Donahue, C Wade and DR Storm (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning.Nature Neurosci. 1, 595–601.PubMedCrossRefGoogle Scholar
  50. Karcz-Kubicha M, G Quack and W Danysz (1998) Amantadine attenuates response alterations resulting from repetitive L-DOPA treatment in rats.J. Neural Transm. 105, 1229–1236PubMedCrossRefGoogle Scholar
  51. Kelz MB, JS Chen, WA Carlezon, K Whisler, L Gilden, AM Beckmann, C Steffen, YJ Zhang, L Marotti, DW Self, T Tkatch, G Baranauskas, DJ Surmeier, RL Neve, RS Duman, MR Picciotto and EJ Nestler (1999) Expression of the transcriptional factor ΔFosB in the brain controls sensitivity to cocaine.Nature 401, 272–276.PubMedCrossRefGoogle Scholar
  52. Khan SM, TS Smith and JP Bennett (1999) Effects of single and multiple treatments with L-dihydroxyphenylalanine (L-DOPA) on dopamine receptor-G protein interactions and supersensitive immediate early gene responses in striata of rats after reserpine treatment or with unilateral nigrostriatal lesions.J. Neurosci. Res. 55, 55–71.CrossRefGoogle Scholar
  53. Klockgether T, L Turski, T Honore, Z Zhang, DM Gash, R Kurlan and JT Greenamyre (1991) The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys.Ann. Neurol. 30, 717–723.PubMedCrossRefGoogle Scholar
  54. Konitsiotis S, PJ Blanchet, L Verhagen, E Lamers and TN Chase (2000) AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys.Neurology 8, 1589–1595.Google Scholar
  55. Kotter R (1994) Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum.Prog. Neurobiol. 44, 163–196.PubMedCrossRefGoogle Scholar
  56. Lan JY, VA Skeberdis, T Jover, SY Grooms, Y Lin, RC Araneda, X Zheng, MVL Bennett and RS Zukin (2001) Protein kinase C modulates NMDA receptor trafficking and gating.Nature Neurosci. 4, 382–390.PubMedCrossRefGoogle Scholar
  57. Lew J, Q Huang, Q Zhong, R Winkfein, R Aebersold, T Hunt and J Wang (1994) A brain-specific activator of cyclin-dependent kinase 5.Nature 271, 423–426.CrossRefGoogle Scholar
  58. Liao GY, DA Wagner, MH Hsu and JP Leonard (2001) Evidence for direct protein kinase-C mediated modulation ofN-methyl-D-aspartate receptor current.Mol. Pharmacol. 59, 960–964.PubMedGoogle Scholar
  59. Luquin MR, JA Obesbo, J Laguma, J Guillen and JM Martinez-Lage (1993) the AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys.Eur. J. Pharmaol. 235, 297–300.CrossRefGoogle Scholar
  60. Marin C, S Papa, TM Engber, M Bonastre, E Tolosa and TN Chase (1996) MK-801 prevents levodopa-induced motor response alterations in parkinsonian rats.Brain Res. 736, 202–205.PubMedCrossRefGoogle Scholar
  61. Marin C, A Jimenez, M Bonastre, TN Chase and E Tolosa (2000) Non-NMDA receptor-mediated mechanisms in levodopa-induced motor response alterations in parkinsonian rats.Synapse 36, 267–274.PubMedCrossRefGoogle Scholar
  62. Mayer ML and GL Westbrook (1987) The physiology of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol. 3, 197–276.CrossRefGoogle Scholar
  63. McDonald BJ, HJ Chung and RL Huganir (2001) Identification of protein kinase C phosphorylation sites within the AMPA.Neuropharmacology 6, 672–679.CrossRefGoogle Scholar
  64. Menegoz M, LF Lau, D Herve, RL Huganir and JA Girault (1995) Tyrosine phosphorylation of NMDA receptor in rat striatum: effects of 6-OH-dopamine lesions.Neuroreport 7, 125–128.PubMedGoogle Scholar
  65. Merello M, MI Nouzeilles, A Cammarota and R Leiguarda (1999) Effect of memantine (NMDA antagonist) on Parkinson's disease: a double blind crossover randomized study.Clin. Neuropharmacol. 22, 273–276.PubMedGoogle Scholar
  66. Meshul CK and C Allen (2000) Haloperidol reverses the changes in striatal glutamatergic immunolabeling following a 6-OHDA lesion.Synapse 2, 129–142.CrossRefGoogle Scholar
  67. Metman LV, PJ Blancet, P van den Munckhof, P Del Dotto, R Natte and TN Chase (1998a) A trial of dextromethorphan in parkinsonian patients with motor response complications.Mov. Disord. 13, 414–417.CrossRefGoogle Scholar
  68. Metman LV, PD Dotto, P van den Munckhof, J Fang, MM Mouradian and TN Chase (1998b) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease.Neurology 50, 1323–1329.Google Scholar
  69. Metman LV, PD Dotto, R Natte, P van den Munckhof and TN Chase (1998c) Dextromethorphan improves levodopa-induced dyskinesias in Parkinson's disease.Neurology 51, 203–206.Google Scholar
  70. Mitchell IJ and CB Carroll (1997) Reversal of parkinsonian symptoms in primates by antagonism of excitatory amino acid transmission: potential mechanisms of action.Neurosci. Biobehav. Rev. 21, 469–475.PubMedCrossRefGoogle Scholar
  71. Mouradian MM, IJ Heuser, F Baronti and TN Chase (1990) Modification of central dopaminergic mechanisms by continuous levodopa therapy for advanced Parkinson's disease.Ann. Neurol. 27, 18–23.PubMedCrossRefGoogle Scholar
  72. Nicoll RA and RC Malenka (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus.Nature 377, 115–118.PubMedCrossRefGoogle Scholar
  73. Nishi A, JA Bibb, GL Snyder, H Higashi, AC Nairn and P Greengard (2000) Amplification of dopaminergic signaling by a positive feedback loop.Proc. Natl. Acad. Sci. USA 97, 12840–12845.PubMedCrossRefGoogle Scholar
  74. Oh JD, PD Dotto and TN Chase (1997) Protein kinase A inhibitor attenuates levodopa-induced motor response alterations in the hemi-parkinsonian rat.Neurosci. Lett. 228, 5–8.PubMedCrossRefGoogle Scholar
  75. Oh JD, D Russell CL Vaughan and TN Chase (1998) Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: Effect of dopaminergic denervation and levodopa administration.Brain Res. 813, 150–159.PubMedCrossRefGoogle Scholar
  76. Oh JD, CL Vaughan and TN Chase (1999), Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits.Brain Res. 821, 433–442.PubMedCrossRefGoogle Scholar
  77. Ozawa S, H Kamiya and K Tsuzuki (1998) Glutamate receptors in the mammalian central nervous system.Prog. Neurobiol. 54, 581–618.PubMedCrossRefGoogle Scholar
  78. Papa SM and TN Chase (1996) Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys.Ann. Neurol. 39, 574–578.PubMedCrossRefGoogle Scholar
  79. Papa SM, TM Engber AM Kask and TN Chase (1994) Motor fluctuations in levodopa treated parkinsonian rats: relation to lesion extent and treatment duration.Brain Res. 662, 69–74.PubMedCrossRefGoogle Scholar
  80. Papa SM, RC Boldry, TM Engber, AM Kask and TN Chase (1995) Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade.Brain Res. 701, 13–18.PubMedCrossRefGoogle Scholar
  81. Parent A and F Cicchetti (1998) The current model of basal ganglia organization under scrutiny.Mov. Disord. 2, 199–202.CrossRefGoogle Scholar
  82. Parent A, MC Asselin and PY Cote (1996) Dopaminergic regulation of peptide gene expression in the striatum of normal and parkinsonian monkeys.Adv. Neurol. 69, 73–77.PubMedGoogle Scholar
  83. Pietruck C, G-X Xie, M Sharma, T Meuser and PP Palmer (1999) Multiple splice patterns of cyclic AMP response element-binding protein mRNA in the central nervous system of the rat.Mol. Brain Res. 69, 286–289.PubMedCrossRefGoogle Scholar
  84. Pittenger C and E Kandel (1998) A genetic switch for long-term memory.Life Sci. 321, 91–96.Google Scholar
  85. Quinn PG (1993) Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription.J. Biol. Chem. 268, 16999–17009.PubMedGoogle Scholar
  86. Reiner A, R Albin, KD Anderson, CJ D'Amato, JB Penney and AB Young (1988) Differential loss of striatal projection neurons in Huntington's disease.Proc. Natl. Acad. Sci. USA 85, 5733–5737.PubMedCrossRefGoogle Scholar
  87. Sachdev PS (2000) The current status of tardive dyskinesia.Aust. NZ J. Psychiatry 3, 355–369.CrossRefGoogle Scholar
  88. Schultz W (1994) Behavior-related activity of primate dopamine neurons.Rev. Neurol. 150, 634–639.PubMedGoogle Scholar
  89. Sheng M, MA Thompson and ME Greenberg (1991) CREB, a Ca(2+) regulated transcription factor phosphorylated by calmodulin-dependent kinase.Science 252, 1427–1430.PubMedCrossRefGoogle Scholar
  90. Silva AJ, JH Kogan, PW Frankland and S Kida (1998) CREB and memory.Ann. Rev. Neurosci. 21, 127–148.PubMedCrossRefGoogle Scholar
  91. Smith Y, BD Bennett, JP Bolam, A Parent and AF Sadikot (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey.J. Comp. Neurol. 1, 1–19.CrossRefGoogle Scholar
  92. Snyder GL, PB Allen, AA Fienberg, CG Valle, RL Huganir, AC Nairn and P Greengard (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulantsin vivo.J. Neurosci. 12, 4480–4488.Google Scholar
  93. Snyder GL, Z Yan, S Galdi, PB Allen, AA Feinberg, JA Bibb, RL Huganir, AC Nairn and P Greengard (2001) A D1-receptor/PKA/DARPP-32/PPI pathway regulates AMPA receptor phosphorylation and conductance in the neostriatum.Brit. J. Pharmacol. 133, 268.Google Scholar
  94. Sommer B, K Keinanen, TA Verdoorn, W Wisden, N Burnashev, A Herb, M Kohler, T Takagi, B Sakmann and PH Seeburg (1990) flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.PubMedCrossRefGoogle Scholar
  95. Suen PC, K Wu, JL Xu, SY Lin, ES Levine and IB Black (1998) NMDA receptor subunits in the postsynaptic density of rat brain: expression and phosphorylation by endogenous protein kinases.Mol. Brain Res. 59, 215–228.PubMedCrossRefGoogle Scholar
  96. Sun Y, A Savanenin, PH Reddy and YF Liu (2001) Polyglutamine-expanded huntingtin promotes sensitization ofN-methyl-D-aspartate receptors via post-synaptic density 95.J. Biol. Chem. 27, 24713–24718.CrossRefGoogle Scholar
  97. Swope SL, SI Moss, LA Raymond and RL Huganir (1999) Regulation of ligand-gated ion channels by protein phosphorylation.Adv. Second Messenger Phosphoprot. Res. 33, 49–78.Google Scholar
  98. Tingley WG, MD Ehlers, K Kameyama, C Doherty, JB Ptak, CT Riley and RL Huganir (1997) Characterization of protein kinase A and protein kinase C phosphorylation of theN-methyl-D-aspartate receptor NR1 subunit using phosphorylation site specific antibodies.J. Biol. Chem. 72, 5157–5166.Google Scholar
  99. Ulas J and C Cotman (1996) Dopaminergic denervation of striatum results in elevated expression of NR2A subunit.J. Neuroreport 7, 1789–1793.CrossRefGoogle Scholar
  100. Verhagen L, M Morris, C Farmer, M Gillespie, J Wuu and TN Chase (2001) A double-blind placebo-controlled crossover study of the effect of amantadine on chorea in Huntington's disease.Neurology 56 (Suppl 3), A386.Google Scholar
  101. Vonsattel JP and M DiFiglia (1998) Huntington disease.J. Neuropathol. Exp. Neurol. 5, 369–384.CrossRefGoogle Scholar
  102. Westbrook GL (1994) Glutamate receptor update.Curr. Opin. Neurobiol. 3, 337–346.CrossRefGoogle Scholar
  103. Wirshing WC (2001) Movement disorders associated with neuroleptic treatment.J. Clin. Psychiatry 62 (Suppl 21), 15–18.PubMedGoogle Scholar
  104. Wollmuth LP, T Kuner, PH Seeburg and B Sakmann (1996) Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels.J. Physiol. (Lond.) 491, 779–797.Google Scholar
  105. Yu XM, R Askalan, GJ Keil II and MW Salter (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src.Science 275, 674–678.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Thomas N. Chase
    • 1
  • Francesco Bibbiani
    • 1
  • Justin D. Oh
    • 1
  1. 1.National Institutes of Health, Experimental Therapeutics Branch, NINDSNIHBethesdaUSA

Personalised recommendations