Behavioral characterization of GLT1 (+/-) mice as a model of mild glutamatergic hyperfunction

Abstract

GLT1 is one of the major transporters responsible for maintenance of glutamate homeostasis in the brain. In the present study, glutamate transporter 1-deficient GLT1 homozygous (-/-) and heterozygous (+/-) mice were investigated with the intention that they may provide a model of hyperglutamatergic state resulting in various behavioral alterations. The GLT1 (-/-) mice had lower body and brain weight, mild neuronal loss in CA1 hippocampal region as well as focal gliosis and severe focal neuronal paucity in layer II of the neocortex. The short life-span of GLT1 (-/-) precluded us from systematic behavioral studies in these mice. In contrast, GLT1 (+/-) mice exhibiting a 59% decrease in GLT1 immunoreactivity in their brain tissue, showed no apparent morphological brain abnormalities, and their life-span was not markedly different from controls. Behavior ally, GLT1 (+/-) presented moderate behavioral alterations compared to their wildtype littermates, such as: mild sensorimotor impairment, hyperlocomotion (at 3 month of age only), lower anxiety (at 6 months), better learning of cue-based fear conditioning but worse context-based fear conditioning. Our results suggest that GLT1 (+/-) mice may serve as a potentially useful model to study neurodegenerative disease conditions with mild hyperglutamatergic activity.

This is a preview of subscription content, log in to check access.

References

  1. Accili D, CS Fishburn, J Drago, H Steiner, JE Lachowicz, BH Park, EB Gauda, EJ Lee, MH Cool, DR Sibley, CR Gerfen, H Westphal and S Fuchs (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice.Proc. Natl. Acad. Sci. USA 93, 1945–1949.

    PubMed  Article  CAS  Google Scholar 

  2. Benveniste H, J Drejer, A Schusboe and NH Diemer (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1374.

    PubMed  Article  CAS  Google Scholar 

  3. Carlsson M and A Carlsson (1990) Interaction between glutamatergic and monoaminergic systems within the basal ganglia — implications for schizophrenia and Parkinson’s disease.Trends Neurosci. 13, 272–276.

    PubMed  Article  CAS  Google Scholar 

  4. Collingridge G (1987) The role of NMDA receptors in learning and memory.Nature 330, 604–605.

    PubMed  Article  CAS  Google Scholar 

  5. Czuczwar SJ and BS Meldrum (1982) Protection against chemically induced seizures by 2-amino-7-phosphonoheptanoic acd.Eur. J. Pharmacol. 83, 335–338.

    PubMed  Article  CAS  Google Scholar 

  6. Danbolt NC (2001) Glutamate uptake.Prog. Neurobiol. 65, 1–105.

    PubMed  Article  CAS  Google Scholar 

  7. Danysz W and CG Parsons (2002) Neuroprotective potential of ionotropic glutamate receptor antagonists - II.Neurotox. Res. 4, 119–126.

    PubMed  Article  CAS  Google Scholar 

  8. Danysz W and CG Parsons (2003) The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease. Preclinical evidence.Intl. J. Geriatric Psychiatry 18, S23-S32.

    Article  Google Scholar 

  9. Danysz W, CG Parsons, I Bresink and G Quack (1995a) Glutamate in CNS disorders — a revived target for drug development.Drug News Perspect. 8, 261–277.

    Google Scholar 

  10. Danysz W, W Zajaczkowski and CG Parsons (1995b) Modulation of learning processes by ionotropic glutamate receptor ligands.Behav. Pharmacol. 6, 455–474.

    PubMed  CAS  Google Scholar 

  11. Eilam D, M Dank and R Maurer (2003) Voles scale locomotion to the size of the open-field by adjusting the distance between stops: a possible link to path integration.Behav. Brain Res. 141, 73–81.

    PubMed  Article  Google Scholar 

  12. Fradley RL, GF O’Meara, RJ Newman, A Andrieux, D Job and DS Reynolds (2005) STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating.Behav. Brain Res. 163, 257–264.

    PubMed  Article  CAS  Google Scholar 

  13. Gravius A, C Barberi, D Schäfer, WJ Schmidt and W Danysz (2006) The role of groupI metabotropic glutamate receptors in acquisition and expression of contextual and auditory fear conditioning in rats — a comparison.Neuropharmacology 51, 1146–1155.

    PubMed  Article  CAS  Google Scholar 

  14. Greenamyre JT (1991) Neuronal bioenergetic defects, excitotoxicity and Alzheimer’s disease — use it and lose it.Neurobiol. Aging 12, 334–336.

    PubMed  Article  CAS  Google Scholar 

  15. Greenamyre JT, EF Maragos, RL Albin, JB Penney and AB Young (1988) Glutamate transmission and toxicity in Alzheimer’s disease.Prog. Neuro-Psych. Biol. Psychiatry 12, 421–430.

    Article  CAS  Google Scholar 

  16. Harris ME, YN Wang, NW Pedigo, K Hensley, DA Butterfield and JM Carney (1996) Amyloid-β peptide (25-35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cul tures.J. Neurochem. 67, 277–286.

    PubMed  CAS  Article  Google Scholar 

  17. Katagiri H, K Tanaka and T Manabe (2001) Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction.Eur. J. Neurosci. 14, 547–553.

    PubMed  Article  CAS  Google Scholar 

  18. Li JH, YH Wang, BB Wolfe, KE Krueger, L Corsi, G Stocca and S Vicini (1998) Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical.Eur. J. Neurosci. 10, 1704–1715.

    PubMed  Article  CAS  Google Scholar 

  19. Lipton SA (1992) Models of neuronal injury in AIDS-another role for the NMDA receptor.Trends Neurosci. 15, 75–79.

    PubMed  Article  CAS  Google Scholar 

  20. Masliah E, M Alford, R DeTeresa, M Mallory and L Hansen (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease.Ann. Neurol. 40, 759–766.

    PubMed  Article  CAS  Google Scholar 

  21. Masliah E, M Alford, M Mallory, E Rockenstein, D Moechars and F Van Leuven (2000) Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice.Exp. Neurol. 163, 381–387.

    PubMed  Article  CAS  Google Scholar 

  22. Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders.Neurology 44, 14–23.

    Article  Google Scholar 

  23. Meldrum B and J Garthwaite (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease.Trends Pharmacol. Sci. 11, 379–387.

    PubMed  Article  CAS  Google Scholar 

  24. Mitani A and K Tanaka (2003) Functional changes of glial glutamate transporter GLT-1 during ischemia: anin vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1.J. Neurosci. 23, 7176–82.

    PubMed  CAS  Google Scholar 

  25. Nicolls D and D Attwell (1990) The release and uptake of exitatory amino acid.Trends Pharmacol. Sci. 11, 462–468.

    Article  Google Scholar 

  26. Noda M, H Nakanishi and N Akaike (1999) Glutamate release from microglia via glutamate transporter is enhanced by amyloid-β peptide.Neuroscience 92, 1465–1474.

    PubMed  Article  CAS  Google Scholar 

  27. Pardo AC, V Wong, LM Benson, M Dykes, K Tanaka, JD Rothstein and NJ Maragakis (2006) Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice.Exp. Neurol. 201(1), 120–130. Epub 2006 Jun 6.

    PubMed  Article  CAS  Google Scholar 

  28. Phillips RG and JE LeDoux (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning.Behav. Neurosci. 106, 274–285.

    PubMed  Article  CAS  Google Scholar 

  29. Rothman SM and JW Olney (1987) Excitotoxicity and the NMDA receptor.Trends Neurosci. 10, 299–302.

    Article  CAS  Google Scholar 

  30. Rothstein JD (1995) Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis.Clin. Neurosci. 3, 348–359.

    PubMed  Google Scholar 

  31. Rothstein JD, LJ Martin and RW Kuncl (1992) Decreased gluta mate transport by the brain and spinal cord in amyotrophic lateral sclerosis.N. Engl. J. Med. 326, 1464–1468.

    PubMed  CAS  Google Scholar 

  32. Rothstein JD, M Vankammen, AI Levey, LJ Martin and RW Kuncl (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis.Ann. Neurol. 38, 73–84.

    PubMed  Article  CAS  Google Scholar 

  33. Schmidt WJ, M Bubser and W Hauber (1990) Excitatory amino acids and Parkinson’s disease.Trends Neurosci. 13, 46.

    PubMed  Article  CAS  Google Scholar 

  34. Schwarcz R and C Köhler (1983) Differential vulnerability of central neurons of the rat to quinolinic acid.Neurosci. Lett. 38, 85–90.

    PubMed  Article  CAS  Google Scholar 

  35. Seal RP and SG Amara (1999) Excitatory amino acid transporters: a family in flux.Annu. Rev. Pharmacol. Toxicol. 39, 431–456.

    PubMed  Article  CAS  Google Scholar 

  36. Steiner H, S Fuchs and D Accili (1997) D3 dopamine receptor- deficient mouse: evidence for reduced anxiety.Physiol. Behav.63, 137–141.

    PubMed  Article  CAS  Google Scholar 

  37. Takatsuru Y, M Iino, K Tanaka and S Ozawa (2007) Contribution of glutamate transporter GLT-1 to removal of synaptically released glutamate at climbing fiber-Purkinje cell synapses.Neurosci. Lett. 420, 85–89.

    PubMed  Article  CAS  Google Scholar 

  38. Tanaka K (1993) Expression cloning of a rat glutamate transporter.Neurosci. Res. 16, 149–153.

    PubMed  Article  CAS  Google Scholar 

  39. Tanaka K (2000) Functions of glutamate transporters in the brain.Neurosci. Res. 37, 15–19.

    PubMed  Article  CAS  Google Scholar 

  40. Tanaka K, K Watase, T Manabe, K Yamada, M Watanabe, K Takahashi, H Iwama, T Nishikawa, N Ichihara, T Kikuchi, S Okuyama, N Kawashima, S Hori, M Takimoto and K Wada (1997a) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1.Science 276, 1699–1702.

    PubMed  Article  CAS  Google Scholar 

  41. Tanaka E, S Yamamoto, Y Kudo, S Mihara and H Higashi (1997b) Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neuronsin vitro.J. Neurophysiol. 78, 891–902.

    PubMed  CAS  Google Scholar 

  42. Turski L, K Bressler, KJ Rettig, PA Löschmann and H Wachtel (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.Nature 349, 414–417.

    PubMed  Article  CAS  Google Scholar 

  43. Ueda Y, T Doi, N Tsuru, J Tokumaru and Y Mitsuyama (2002) Expression of glutamate transporters and ionotropic glutamate receptors in GLAST knockout mice.Brain Res. Mol. Brain Res. 104, 120–126.

    PubMed  Article  CAS  Google Scholar 

  44. Zoia C, T Cogliati, E Tagliabue, G Cavaletti, G Sala, G Galimberti, I Rivolta, V Rossi, L Frattola and C Ferrarese (2004) Glutamate transporters in platelets: EAAT1 decrease in aging and in Alzheimer’s disease.Neurobiol. Aging 25, 149–157.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Anna Kiryk or Tomomi Aida or Kohichi Tanaka or Pradeep Banerjee or Grzegorz M. Wilczynski or Ksenia Meyza or Ewelina Knapska or Robert K. Filipkowski or Leszek Kaczmarek or Wojciech Danysz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kiryk, A., Aida, T., Tanaka, K. et al. Behavioral characterization of GLT1 (+/-) mice as a model of mild glutamatergic hyperfunction. neurotox res 13, 19–30 (2008). https://doi.org/10.1007/BF03033364

Download citation

Keywords

  • GLT1 KO mice
  • GLT1 (+/-) mice
  • Glutamate uptake
  • Histology
  • Immunochemistry
  • Behavior