Neurotoxicity Research

, Volume 13, Issue 1, pp 19–30 | Cite as

Behavioral characterization of GLT1 (+/-) mice as a model of mild glutamatergic hyperfunction

  • Anna Kiryk
  • Tomomi Aida
  • Kohichi Tanaka
  • Pradeep Banerjee
  • Grzegorz M. Wilczynski
  • Ksenia Meyza
  • Ewelina Knapska
  • Robert K. Filipkowski
  • Leszek Kaczmarek
  • Wojciech DanyszEmail author


GLT1 is one of the major transporters responsible for maintenance of glutamate homeostasis in the brain. In the present study, glutamate transporter 1-deficient GLT1 homozygous (-/-) and heterozygous (+/-) mice were investigated with the intention that they may provide a model of hyperglutamatergic state resulting in various behavioral alterations. The GLT1 (-/-) mice had lower body and brain weight, mild neuronal loss in CA1 hippocampal region as well as focal gliosis and severe focal neuronal paucity in layer II of the neocortex. The short life-span of GLT1 (-/-) precluded us from systematic behavioral studies in these mice. In contrast, GLT1 (+/-) mice exhibiting a 59% decrease in GLT1 immunoreactivity in their brain tissue, showed no apparent morphological brain abnormalities, and their life-span was not markedly different from controls. Behavior ally, GLT1 (+/-) presented moderate behavioral alterations compared to their wildtype littermates, such as: mild sensorimotor impairment, hyperlocomotion (at 3 month of age only), lower anxiety (at 6 months), better learning of cue-based fear conditioning but worse context-based fear conditioning. Our results suggest that GLT1 (+/-) mice may serve as a potentially useful model to study neurodegenerative disease conditions with mild hyperglutamatergic activity.


GLT1 KO mice GLT1 (+/-) mice Glutamate uptake Histology Immunochemistry Behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Accili D, CS Fishburn, J Drago, H Steiner, JE Lachowicz, BH Park, EB Gauda, EJ Lee, MH Cool, DR Sibley, CR Gerfen, H Westphal and S Fuchs (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice.Proc. Natl. Acad. Sci. USA 93, 1945–1949.PubMedCrossRefGoogle Scholar
  2. Benveniste H, J Drejer, A Schusboe and NH Diemer (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1374.PubMedCrossRefGoogle Scholar
  3. Carlsson M and A Carlsson (1990) Interaction between glutamatergic and monoaminergic systems within the basal ganglia — implications for schizophrenia and Parkinson’s disease.Trends Neurosci. 13, 272–276.PubMedCrossRefGoogle Scholar
  4. Collingridge G (1987) The role of NMDA receptors in learning and memory.Nature 330, 604–605.PubMedCrossRefGoogle Scholar
  5. Czuczwar SJ and BS Meldrum (1982) Protection against chemically induced seizures by 2-amino-7-phosphonoheptanoic acd.Eur. J. Pharmacol. 83, 335–338.PubMedCrossRefGoogle Scholar
  6. Danbolt NC (2001) Glutamate uptake.Prog. Neurobiol. 65, 1–105.PubMedCrossRefGoogle Scholar
  7. Danysz W and CG Parsons (2002) Neuroprotective potential of ionotropic glutamate receptor antagonists - II.Neurotox. Res. 4, 119–126.PubMedCrossRefGoogle Scholar
  8. Danysz W and CG Parsons (2003) The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease. Preclinical evidence.Intl. J. Geriatric Psychiatry 18, S23-S32.CrossRefGoogle Scholar
  9. Danysz W, CG Parsons, I Bresink and G Quack (1995a) Glutamate in CNS disorders — a revived target for drug development.Drug News Perspect. 8, 261–277.Google Scholar
  10. Danysz W, W Zajaczkowski and CG Parsons (1995b) Modulation of learning processes by ionotropic glutamate receptor ligands.Behav. Pharmacol. 6, 455–474.PubMedGoogle Scholar
  11. Eilam D, M Dank and R Maurer (2003) Voles scale locomotion to the size of the open-field by adjusting the distance between stops: a possible link to path integration.Behav. Brain Res. 141, 73–81.PubMedCrossRefGoogle Scholar
  12. Fradley RL, GF O’Meara, RJ Newman, A Andrieux, D Job and DS Reynolds (2005) STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating.Behav. Brain Res. 163, 257–264.PubMedCrossRefGoogle Scholar
  13. Gravius A, C Barberi, D Schäfer, WJ Schmidt and W Danysz (2006) The role of groupI metabotropic glutamate receptors in acquisition and expression of contextual and auditory fear conditioning in rats — a comparison.Neuropharmacology 51, 1146–1155.PubMedCrossRefGoogle Scholar
  14. Greenamyre JT (1991) Neuronal bioenergetic defects, excitotoxicity and Alzheimer’s disease — use it and lose it.Neurobiol. Aging 12, 334–336.PubMedCrossRefGoogle Scholar
  15. Greenamyre JT, EF Maragos, RL Albin, JB Penney and AB Young (1988) Glutamate transmission and toxicity in Alzheimer’s disease.Prog. Neuro-Psych. Biol. Psychiatry 12, 421–430.CrossRefGoogle Scholar
  16. Harris ME, YN Wang, NW Pedigo, K Hensley, DA Butterfield and JM Carney (1996) Amyloid-β peptide (25-35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cul tures.J. Neurochem. 67, 277–286.PubMedCrossRefGoogle Scholar
  17. Katagiri H, K Tanaka and T Manabe (2001) Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction.Eur. J. Neurosci. 14, 547–553.PubMedCrossRefGoogle Scholar
  18. Li JH, YH Wang, BB Wolfe, KE Krueger, L Corsi, G Stocca and S Vicini (1998) Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical.Eur. J. Neurosci. 10, 1704–1715.PubMedCrossRefGoogle Scholar
  19. Lipton SA (1992) Models of neuronal injury in AIDS-another role for the NMDA receptor.Trends Neurosci. 15, 75–79.PubMedCrossRefGoogle Scholar
  20. Masliah E, M Alford, R DeTeresa, M Mallory and L Hansen (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease.Ann. Neurol. 40, 759–766.PubMedCrossRefGoogle Scholar
  21. Masliah E, M Alford, M Mallory, E Rockenstein, D Moechars and F Van Leuven (2000) Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice.Exp. Neurol. 163, 381–387.PubMedCrossRefGoogle Scholar
  22. Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders.Neurology 44, 14–23.CrossRefGoogle Scholar
  23. Meldrum B and J Garthwaite (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease.Trends Pharmacol. Sci. 11, 379–387.PubMedCrossRefGoogle Scholar
  24. Mitani A and K Tanaka (2003) Functional changes of glial glutamate transporter GLT-1 during ischemia: anin vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1.J. Neurosci. 23, 7176–82.PubMedGoogle Scholar
  25. Nicolls D and D Attwell (1990) The release and uptake of exitatory amino acid.Trends Pharmacol. Sci. 11, 462–468.CrossRefGoogle Scholar
  26. Noda M, H Nakanishi and N Akaike (1999) Glutamate release from microglia via glutamate transporter is enhanced by amyloid-β peptide.Neuroscience 92, 1465–1474.PubMedCrossRefGoogle Scholar
  27. Pardo AC, V Wong, LM Benson, M Dykes, K Tanaka, JD Rothstein and NJ Maragakis (2006) Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice.Exp. Neurol. 201(1), 120–130. Epub 2006 Jun 6.PubMedCrossRefGoogle Scholar
  28. Phillips RG and JE LeDoux (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning.Behav. Neurosci. 106, 274–285.PubMedCrossRefGoogle Scholar
  29. Rothman SM and JW Olney (1987) Excitotoxicity and the NMDA receptor.Trends Neurosci. 10, 299–302.CrossRefGoogle Scholar
  30. Rothstein JD (1995) Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis.Clin. Neurosci. 3, 348–359.PubMedGoogle Scholar
  31. Rothstein JD, LJ Martin and RW Kuncl (1992) Decreased gluta mate transport by the brain and spinal cord in amyotrophic lateral sclerosis.N. Engl. J. Med. 326, 1464–1468.PubMedGoogle Scholar
  32. Rothstein JD, M Vankammen, AI Levey, LJ Martin and RW Kuncl (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis.Ann. Neurol. 38, 73–84.PubMedCrossRefGoogle Scholar
  33. Schmidt WJ, M Bubser and W Hauber (1990) Excitatory amino acids and Parkinson’s disease.Trends Neurosci. 13, 46.PubMedCrossRefGoogle Scholar
  34. Schwarcz R and C Köhler (1983) Differential vulnerability of central neurons of the rat to quinolinic acid.Neurosci. Lett. 38, 85–90.PubMedCrossRefGoogle Scholar
  35. Seal RP and SG Amara (1999) Excitatory amino acid transporters: a family in flux.Annu. Rev. Pharmacol. Toxicol. 39, 431–456.PubMedCrossRefGoogle Scholar
  36. Steiner H, S Fuchs and D Accili (1997) D3 dopamine receptor- deficient mouse: evidence for reduced anxiety.Physiol. Behav.63, 137–141.PubMedCrossRefGoogle Scholar
  37. Takatsuru Y, M Iino, K Tanaka and S Ozawa (2007) Contribution of glutamate transporter GLT-1 to removal of synaptically released glutamate at climbing fiber-Purkinje cell synapses.Neurosci. Lett. 420, 85–89.PubMedCrossRefGoogle Scholar
  38. Tanaka K (1993) Expression cloning of a rat glutamate transporter.Neurosci. Res. 16, 149–153.PubMedCrossRefGoogle Scholar
  39. Tanaka K (2000) Functions of glutamate transporters in the brain.Neurosci. Res. 37, 15–19.PubMedCrossRefGoogle Scholar
  40. Tanaka K, K Watase, T Manabe, K Yamada, M Watanabe, K Takahashi, H Iwama, T Nishikawa, N Ichihara, T Kikuchi, S Okuyama, N Kawashima, S Hori, M Takimoto and K Wada (1997a) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1.Science 276, 1699–1702.PubMedCrossRefGoogle Scholar
  41. Tanaka E, S Yamamoto, Y Kudo, S Mihara and H Higashi (1997b) Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neuronsin vitro.J. Neurophysiol. 78, 891–902.PubMedGoogle Scholar
  42. Turski L, K Bressler, KJ Rettig, PA Löschmann and H Wachtel (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.Nature 349, 414–417.PubMedCrossRefGoogle Scholar
  43. Ueda Y, T Doi, N Tsuru, J Tokumaru and Y Mitsuyama (2002) Expression of glutamate transporters and ionotropic glutamate receptors in GLAST knockout mice.Brain Res. Mol. Brain Res. 104, 120–126.PubMedCrossRefGoogle Scholar
  44. Zoia C, T Cogliati, E Tagliabue, G Cavaletti, G Sala, G Galimberti, I Rivolta, V Rossi, L Frattola and C Ferrarese (2004) Glutamate transporters in platelets: EAAT1 decrease in aging and in Alzheimer’s disease.Neurobiol. Aging 25, 149–157.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Anna Kiryk
    • 1
  • Tomomi Aida
    • 2
  • Kohichi Tanaka
    • 2
  • Pradeep Banerjee
    • 3
  • Grzegorz M. Wilczynski
    • 1
  • Ksenia Meyza
    • 1
  • Ewelina Knapska
    • 1
  • Robert K. Filipkowski
    • 1
  • Leszek Kaczmarek
    • 1
  • Wojciech Danysz
    • 4
    Email author
  1. 1.Nencki Institute of Experimental BiologyWarsawPoland
  2. 2.Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research InstituteTokyo Medical and Dental UniversityBunkyo-Ku, TokyoJapan
  3. 3.Forest Research InstituteJersey CityUSA
  4. 4.In Vivo Pharmacology, Merz PharmaceuticalsFrankfurt am MainGermany

Personalised recommendations