Skip to main content

The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: Functional interrelationships in health and disease: A review — discussion

Abstract

The fact that glutamate, dopamine, iron and reactive oxygen species are potentially individually highly neurotoxic molecules is well known. The purpose of this review is to examine the less well known complex ways in which their normal biological, as well as their neurotoxic activity, are interconnected in relation to fundamental neuronal functions. These functions include synaptic plasticity (formation and removal of synapses), endocytosis-based recycling of receptors for neurotransmitters and neuromodulators, the role of the redox balance between reactive oxygen species and antioxidants in synaptic function, and the possible role of iron-catecholamine complexes in antioxidant protection and intraneuronal iron transport. These systems are closely involved in several diseases of the nervous system including Parkinson’s disease, schizophrenia and Alzheimer’s disease. In all these oxidative stress and a failure of antioxidant defenses are involved. In the former two the neurotoxicity of catecholaminergic o-quinones is important. In the latter excessive oxidation of neuronal membranes and excessive endocytosis and receptor recycling may be an important factor.

This is a preview of subscription content, access via your institution.

References

  1. Abdalla, D.S.P., Monteiro, H.P., Oliveira, J.A.C. and Bechara, E.J.H. (1986) Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic depressive patients.Clin. Chem. 32, 805–807.

    PubMed  CAS  Google Scholar 

  2. Antun, F.T., Burnett, G.B., Cooper, A.J., Daly, R.J., Smythies, J.R. and Zealley, A.K. (1971) The effects of L-methionine (without MAOI) in schizophrenia.J. Psychiatr. Res. 8, 63–71.

    PubMed  Article  CAS  Google Scholar 

  3. Beaudet, A., Stroh, X, Choi-Jackson, A., Sarrett, J., Mazella, J., Vincent, J.-P. and Kreinkamp, H.-L. (1998) Internalization of somatostatin via SST5: confocal and electron microscope studies.Abst. Soc. Neurosci. 24, 592.

    Google Scholar 

  4. Ben-Shacher, D., Eschel, G., Riederer, P. and Youdim, M.B. (1992) Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implications for Parkinson’s disease.Ann. Neurol. 32, S105-S110.

    Article  Google Scholar 

  5. Ben-Shachar, D., Zuk, R. and Glinka, Y. (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration.J. Neurochem.,64, 718–723.

    PubMed  CAS  Google Scholar 

  6. Berman, S.B. and Hastings, T.G. (1997) Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species.J. Neurochem. 69, 1185–1195.

    PubMed  CAS  Google Scholar 

  7. Blake, D.R., Winyard, P., Lunec, J., Williams, A., Good, P.A., Crewes, S.J., Gutteridge, J.M.C., Rowley, D., Halliwell, B., Cornish, A. and Hider, R.C. (1985) Cellular and ocular toxicity induced by desferrioxamine.Quart. J. Med. 56, 345–355.

    PubMed  CAS  Google Scholar 

  8. Boudin, H., Schonbrunn, A., Vincent, J.P. and Beaudet, A. (1998) Regulation of the distribution and expression of somatostatin SST2A receptors by somatostatin in rat brain.Abst. Soc. Neurosci. 24, 591.

    Google Scholar 

  9. Bradbury, M.W.B. (1997) Transport of iron in the blood-brain-cerebrospinal fluid system.J. Neurochem. 69, 443–454.

    PubMed  CAS  Google Scholar 

  10. Bretscher, M.S. and Aguado-Velasco, C. (1998) Membrane traffic during cell locomotion.Curr. Op. Cell Biol. 10, 537–541.

    PubMed  Article  CAS  Google Scholar 

  11. Breuer, W., Epsztejn, S. and Cabantchik, Z.L. (1995) Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron (II).J. Biol. Chem. 270, 24, 209–24, 215.

    Google Scholar 

  12. Breuer, W., Greenberg, E. and Cabantchik, Z.I. (1997) Newly delivered transferrin iron and oxidative cell injury.FEBS Lett. 403, 213–219.

    PubMed  Article  CAS  Google Scholar 

  13. Buckman, T.D., Kling, A.S., Eiduson, S., Sutphin, M.S. and Steinberg, A. (1987) Glutathione peroxidase and CT scan abnormalities in schizophrenia.Biol. Psychiatr. 22, 1349–1356.

    Article  CAS  Google Scholar 

  14. Buckman, T.D., Kling, A., Sutphin, M.S., Steinberg, A. and Eiduson, S. (1990) Platelet glutathione peroxidase and monoamine oxidase activity in schizophrenics with CT scan abnormalities: relation to psychosocial variables.Psychiat. Res. 31, 1–14.

    Article  CAS  Google Scholar 

  15. Cadet, J.L. and Kahler, L.A. (1994) Free radical mechanisms in schizophrenia and tardive dyskinesia.Neurosci. Biobehav. Rev. 18, 457–467.

    PubMed  Article  CAS  Google Scholar 

  16. Cammack, J., Ghasemzadeh, B. and Adams, R.N. (1991) The pharmacological profile of glutamate-evoked ascorbic acid efflux measured byin vivo electrochemistry.Brain Res. 565, 17–22.

    PubMed  Article  CAS  Google Scholar 

  17. Cao, T.T., Mays, R.W. and von Zastrow, M. (1998) Regulated endocytosis of G-protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits.J. Biol. Chan. 273, 24,592–24,602.

    CAS  Google Scholar 

  18. Carlsson, A., Waters, N. and Hansson, L.O. (1994) Neurotransmitter aberrations in schizophrenia: new findings. In: R. Fog, J. Gerlach and R. Hemmingsen (Eds.),Schizophrenia. An Integrated View. (Copenhagen, Munksgard).

    Google Scholar 

  19. Carstam, R., Brinck, C, Hindemith-Augustsson, A., Rorsman, H. and Rosengren, E. (1991) The neuromelanin of the human substantia nigra.Biochim. Biophys. Acta 1097, 152–160.

    PubMed  CAS  Google Scholar 

  20. Castellani, R., Smith, M.A., Richey, P.L. and Perry, G. (1996) Glycoxidation and oxidative stress in Parkinson’s disease and diffuse Lewy body disease.Brain Res. 737, 195–200.

    PubMed  Article  CAS  Google Scholar 

  21. Cataldo, A.M., Barnett, J.L., Pieroni, C. and Nixon, R.A. (1997) Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuro-pathologic evidence of increased beta-amyloidgenesis.J. Neurosci. 17, 6142–6151.

    PubMed  CAS  Google Scholar 

  22. Cheng, F.-C, Kuo, J.-S., Chia, L.-G. and Dryhurst, G. (1996) Elevated 5-S-cysteinyldopamine/homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: possible markers for and potential insights into the patho-biology of Parkinson’s disease.J. Neur. Transmission. 103, 433–446.

    Article  CAS  Google Scholar 

  23. Chiueh, C.C. and Rauhala, P. (1998) Free radicals and MPTP-induced selective destruction of substantia nigra compacta neurons.Adv. Pharmacol. 42, 796–800.

    PubMed  Article  CAS  Google Scholar 

  24. Coscia, C.J., Ignatova, E.G. and Belcheva, M.M. (1998) Receptor endocytosis is required for opioid stimulation of mitogen-activated protein (MAP) kinase.Abst. Soc. Neurosci. 24, 2054.

    Google Scholar 

  25. Coulanges, V., Andre, P., Ziegler, O., Buchheit, L. and Vidon, D.J.-M. (1997) Utilization of iron-catecholamine complexes involving ferric reductase activity.Infect. Immun. 65, 2778–2785.

    PubMed  CAS  Google Scholar 

  26. Cuenod, M., Do, K.Q., Lauer, C.J. and Hulsboer, F. (1997) Could a glutathione model integrate both dopamine and glutamate hypothesis of schizophrenia?Biol. Psychiat. 42, 287S.

    Article  Google Scholar 

  27. Dumartin, B., Caille, I., Gonon, F. and Bloch, B. (1998) Internalization of Dl dopamine receptor in striatal neuronsin vivo as evidence of activation by dopamine agonists.J. Neurosci. 18, 1650–1661.

    PubMed  CAS  Google Scholar 

  28. Ferguson, S.S.G., Barak, L.S., Zhang, J., Laporte, S., Delia Rocco, G. and Caron, M.G. (1998) Formation, trafficking and dissociation of the /32- adrenergic receptor/ /3-arrestin endocytic complex.Abst. Soc. Neurosci. 24, 598.

    Google Scholar 

  29. Fuxe, K., Jansson, A., Tinner, B., Razanin, H., Wang, F.-H., Schött, PA., Agnati, L.F. and ögren, S.O. (1998) Internalization of exogenous ventricular galinin (1-29) into discrete nerve cell populations of the dorsal hippocampus of the rat.Abst. Soc. Neurosci. 24, 2052.

    Google Scholar 

  30. Gai, W.P., Geffen, L.B., Denoroy, L. and Blessing, W.W. (1993) Loss of CI and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson’s disease.Ann. Neurol. 33, 357–367.

    PubMed  Article  CAS  Google Scholar 

  31. Gozlan, H. and Ben-Ari, Y. (1995) NMDA receptor redox sites: are they targets for selective neuronal protection?TI Pharm. Sci. 16, 368–374

    Article  CAS  Google Scholar 

  32. Grimes, M.L., Zhou, J., Beattie, E.C., Yuen, E.C., Hall, D.E., Valletta, J.S., Topp, K.S., LaVail, J.H., Bunnett, N.W. and Mobley, W.C. (1996) Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signalling endosomes.J. Neurosci. 16, 7950–7964.

    PubMed  CAS  Google Scholar 

  33. Grof, S. (1963) Clinical and experimental study of central effects of adrenochrome.J. Neuropsychiatr. 5, 33–50.

    Google Scholar 

  34. Griinewald, R.A. (1993) Ascorbic acid in the brain.Brain Research Reviews 18, 123–133.

    Article  Google Scholar 

  35. Hevroni, D., Rattner, A., Bundman, M., Lederfein, D., Gabarah, A., Mangelus, M., Silverman, M.A., Kedah, H., Noar, C, Kornuc, M., Hanoch, T, Seger, R., Theill, L.E., Nederi, E., Richter-Levin, G. and Cutri, Y. (1998) Hippo-campal plasticity involves extensive gene induction and multiple cellular mechanisms.J. Mol. Neurosci. 10, 76–98.

    Article  Google Scholar 

  36. Hipkiss, A.R., Preston, J.E., Himswoth, D.T.M., Worthington, V.C. and Abbot, N.J. (1997) Protective effects of carnosine against malondialdehyde-induced toxicity towards rat brain endothelial cells.Neurosci. Lett. 238, 135–138.

    PubMed  Article  CAS  Google Scholar 

  37. Hipkiss, A.R. (1998) Carnosine, a protective, anti-ageing peptide?Intern. J. Biochem. Cell Biol. 30, 863–868.

    Article  CAS  Google Scholar 

  38. Hirasawa, A., Awaji, T, Sugawara, X, Tsujimoto, A. and Tsijumoto, G. (1998) Differential mechanism for the cell surface sorting and agonist-promoted internalization of the alpha lB-adenoceptor.Brit. J. Pharmacol. 124, 55–62.

    Article  CAS  Google Scholar 

  39. Hoffer, A., Osmond, H. and Smythies, J.R. (1954) Schizophrenia. A new approach. Part II.J. Ment. Sci. 100, 29–45.

    PubMed  CAS  Google Scholar 

  40. Itoh, K., Weis, S., Mehraein, P. and Muller-Hocker, J. (1996) Cytochrome c oxidase deficits of the human substantia nigra in normal aging.Neurobiol. Aging 17, 843–841.

    PubMed  Article  CAS  Google Scholar 

  41. Jacobs, A. (1977) Low molecular weight intracellular iron transport compounds.Blood 50, 433–439.

    PubMed  CAS  Google Scholar 

  42. Jahn, R. (1998) Synaptic transmission: two players team up for a new tune.Curr. Biol. 8, R856-R858.

    PubMed  Article  CAS  Google Scholar 

  43. Jans, D.A. and Hassan, G. (1998) Nuclear targeting by growth factors, cytokines, and their receptors: a role in signaling?Bioessays 20, 400–411.

    PubMed  Article  CAS  Google Scholar 

  44. Jenner, P. and Olanow, C.W. (1998) Understanding cell death in Parkinson’s disease.Ann. Neurol. 44S1, S77-S84.

    Google Scholar 

  45. Jordan, B., Cvejic, S. and Devi, L. (1998) Kappa opioid receptor regulation by endocytosis and dimerization.Abst. Soc. Neurosci. 24, 1095.

    Google Scholar 

  46. Kang, M.Y., Tsuchiya, M., Packer, L. and Manabe, M. (1998)In vitro study on the antioxidant potential of various drugs used in the preoperative period.Acta Anaesthesiologica Scandinavica 42, 4–12.

    PubMed  Article  CAS  Google Scholar 

  47. Koenig, J.A. and Edwardson, J.M. (1997) Endocytosis and recycling of G protein-coupled receptors.TI Pharmacol. Sci. 18, 276–287.

    CAS  Google Scholar 

  48. Liang, C.T. and Sacktor, B. (1978) The stimulation by catecholamines of guanylate cyclase activity in a cell-free system.J. Cyclic Nucleotide Res. 4, 97–111.

    PubMed  CAS  Google Scholar 

  49. Lieb, K, Andrae, J., Reisert, I. and Pilgrim, C. (1995) Neurotoxicity of dopamine and protective effects of the NMDA receptor antagonist AP-5 differ between male and female dopaminergic neurons.Exp. Neurol. 134, 222–229.

    PubMed  Article  CAS  Google Scholar 

  50. Liu, J. and Mori, A. (1993) Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage.Arch. Biochem. Biophys. 302, 118–127.

    PubMed  Article  CAS  Google Scholar 

  51. Liu, M.-T., Roche, K.W., Wenthold, R.J. and Kirchgessner, A. (1998) Reflex-evoked internalization of metabotropic gluta-mate receptors and expression of pCREB imimmoreactivity in enteric neurons.Abst. Soc. Neurosci. 24, 1273.

    Google Scholar 

  52. Mahadik, S.P. and Mukherjee, S. (1996) Free radical pathology and antioxidant defense in schizophrenia: a review.Schiz. Res. 19, 1–17.

    Article  CAS  Google Scholar 

  53. Mahadik, S.P., Mukherjee, S., Scheaffer, R., Correnti, E.E. and Mahadik, J.S. (1998) Elevated plasma lipid peroxides at the onset of nonaffective psychosis.Biol. Psychiat. 43, 674–679.

    PubMed  Article  CAS  Google Scholar 

  54. Marder, K., Logroscino, G., Tang, M.X., Graziano, J., Cote, L., Louis, E., Alfano, B., Mejia, H., Slavkovich, V. and Mayeux, R. (1998) Systemic iron metabolism and mortality from Parkinson’s disease.Neurology 50, 1138–1140.

    PubMed  CAS  Google Scholar 

  55. Mattammal, M.B., Strong, R., Lakshmi, V.M., Chung, H.D. and Stephenson, A.H. (1995) Prostaglandin H synthase-mediated metabolism of dopamine: implication for Parkinson’s disease.J. Neurochem. 64, 1645–1654.

    PubMed  CAS  Google Scholar 

  56. McCreadie, R.G., MacDonald, E., Wiles, D., Campbell, G. and Paterson, J.R. (1995) The Nithsdale Schizophrenia Surveys. XIV. Plasma lipid peroxide and serum vitamin E levels in patients with and without tardive dyskinesia, and in normal subjects.Brit. J. Psychiat. 167, 610–617.

    PubMed  Article  CAS  Google Scholar 

  57. Melamed, Y., Sirota, P., Dicker, D.R. and Fishman, P. (1998) Superoxide anion production by neutrophils derived from peripheral blood of schizophrenic patients.Psychiatr. Res. 77, 29–34.

    Article  CAS  Google Scholar 

  58. Merad-Boudia, M., Nicole, A., Santiard-Baron, D., Saille, C. and Ceballos-Picot, I. (1998) Mitochondrial impairment as an early event in the process of apotosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease.Biochem. Pharmacol. 56, 645–655.

    PubMed  Article  CAS  Google Scholar 

  59. Michel, P.P. and Hefti, F. (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture.J. Neurosci. Res. 26, 428–435.

    PubMed  Article  CAS  Google Scholar 

  60. Milby, K.H., Mefford, I.N., Chey, W. and Adams, R.N. (1981)In vitro andin vivo depolarization coupled efflux of ascorbic acid in rat brain preparations.Br. Res. Bull. 7, 237–242.

    Article  CAS  Google Scholar 

  61. Moos, T. and Morgan, E.H. (1998) Evidence for low molecular weight non-transferrin-bound iron in rat brain and cerebrospinal fluid.J. Neurosci. Res. 54, 486–494.

    PubMed  Article  CAS  Google Scholar 

  62. Mukherjee, S., Ghosh, R.N. and Maxfield, F.R. (1997) Endocytosis.Physiol. Rev. 77, 759–803.

    PubMed  CAS  Google Scholar 

  63. Murakami, A., Tatsuno, T., Kimura, X, Noguchi, H. and Nakamura, M. (1993) Regulation of nerve growth factor secretion in L-M cells by catechol derivatives.Neurosci. Res. 17, 71–75.

    PubMed  Article  CAS  Google Scholar 

  64. Muthane, U., Yasha, T.C. and Shankar, S.K. (1998) Low numbers and no loss of melanized nigral neurons with increasing age in normal human brains in India.Ann. Neurol. 43, 283–287.

    PubMed  Article  CAS  Google Scholar 

  65. Nakamura, K, Wang, W. and Kang, U.J. (1997) The role of glutathione in dopaminergic neuronal survival.J. Neurochem. 69, 1850–1858.

    PubMed  CAS  Google Scholar 

  66. Neve, R.L., Coopersmith, R., McPhie, D.L., Santeufemio, C, Pratt, K.G., Murphy, C.J. and Lynn, S.D. (1998) The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis.J. Neurosci. 18, 7757–7767.

    PubMed  CAS  Google Scholar 

  67. O’Brien, P.J. (1998) Personal communication.

  68. Odh, G., Carstam, R., Paulson, J., Wittbjer, A., Rosengren, E. and Rorsman, H. (1994) Neuromelanin of the human substantia nigra: a mixed type melanin.J. Neurochem. 62, 2030–2036.

    PubMed  CAS  Article  Google Scholar 

  69. Ohmori, T., Abekawa, T. and Koyama, T. (1996) The role of glutamate in behavioral and neurotoxic effects of metham-phetamine.Neurochem. Int. 29, 301–307.

    PubMed  Article  CAS  Google Scholar 

  70. Ollinger, K. and Brunk, U.T. (1995) Cellular injury induced by oxidative stress is mediated through lysosomal damage.Free Rad. Biol. Med. 19, 565–574.

    PubMed  Article  CAS  Google Scholar 

  71. Pearce, R.K.B., Owen, A., Daniel, S., Jenner, P. and Marsden, CD. (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease.J. Neural Trans. 104, 661–677.

    Article  CAS  Google Scholar 

  72. Pierce, R.C., Rowlett, J.K., Rebec, G.V. and Bardo, M.T. (1995) Ascorbate potentiates amphetamine-induced conditioned place preference and forebrain dopamine release in rats.Brain Res. 688, 21–26.

    PubMed  Article  CAS  Google Scholar 

  73. Qian, Z.M., Tang, PL. and Wang, Q. (1997) Iron crosses the endosomal membrane by a carrier-mediated process.Pro. Biophys. Mol. Biol. 67, 1–15.

    Article  CAS  Google Scholar 

  74. Rebec, G.V. and Pierce, R.C. (1994) A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission.Prog. Neurobiol. 43, 537–565.

    PubMed  Article  CAS  Google Scholar 

  75. Reddy, R.D. and Yao, J.K. (1996) Free radical pathology in schizphrenia: a review.Prost. Leuk. Ess. Fatty Acids 55, 33–43.

    Article  CAS  Google Scholar 

  76. Reddy, R., Sahebarao, M.P, Mukherjee, S. and Murthy, J.N. (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients.Biol. Psychiatr. 30, 409–412.

    Article  CAS  Google Scholar 

  77. Rouze, N.C. and Schwartz, E.A. (1998) Continuous and transient vesicle cycling at a ribbon synapse.J. Neurosci. 18, 8614–8624.

    PubMed  CAS  Google Scholar 

  78. Sam, E.E. and Verbeke, N. (1995) Free radical scavenging properties of apomorphine enantiomers and dopamine: possible implication in their mechaism of action in Parkinsonism.J. Neural Trans. [Parkinson’s disease and Dementia section]10, 115–127.

    Article  CAS  Google Scholar 

  79. Sassoe-Pognetto, M., Cantino, D., Panzanelli, P., Verdun di Cantogno, L., Giustetto, M., Margolis, E, De Biasi, L. and Fasolo, A. (1993) Presynaptic co-localization of carnosine and glutamate in olfactory neurons.NeuroReport 5, 7–10.

    PubMed  CAS  Google Scholar 

  80. Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Akaike, A., Kimura, J. and Shimohama, S. (1998) Dopamine D2-type agonists protect mesencephalic neurons from glutamate neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress.Ann. Neurol. 44, 110–119.

    PubMed  Article  CAS  Google Scholar 

  81. Schapira, A.H.V., Mann, V.M., Cooper, J.M., Krige, D., Jenner, P.J. and Marsden, CD. (1992) Mitochondrial function in Parkinson’s disease.Ann. Neurol. 32, S116-S124.

    PubMed  Article  CAS  Google Scholar 

  82. Schipper, H.M., Liberman, A. and Stopa, E.G. (1998) Neural heme oxygenase-1 expression in ideopathic Parkinson’s disease.Exp. Neurol. 150, 60–68.

    PubMed  Article  CAS  Google Scholar 

  83. Schultz, W. (1997) Dopamine neurons and their role in reward mechanisms.Curr. Op. Neurobiol. 7, 191–197.

    PubMed  Article  CAS  Google Scholar 

  84. Schwartz, B.E., Sem-Jacobsen, C. and Petersen, M.C. (1956a) Effects of mescaline, LSD-25 and adrenochrome on depths electrograms in man.Arch. Neurol. Psychiatr. 75, 579–587.

    Google Scholar 

  85. Schwartz, B.E., Wakim, K.G. and Bickford, R. (1956b) Behavioral and electroencephalographic effects of hallucinogenic drugs: changes in cats on intraventricular injection.Arch. Neurol. Psychiatr. 75, 83–90.

    Google Scholar 

  86. Seitz, G., Gebhardt, S., Beck, J.F., Böhm, W., Lode, H.N., Niethammer, D. and Bruchelt, G. (1998) Ascorbic acid stimulates DOPA synthesis and tyrosine hydroxylase gene expression in the human neuroblastoma cell line SK-N-SH.Neurosci. Lett. 244, 33–36.

    PubMed  Article  CAS  Google Scholar 

  87. Sesack, S.R., Hawrylak, V.A., Matus, C., Guido, M.A. and Levey, A.I. (1998) Dopamine axon varicosities in the pre-limbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter.J. Neurosci. 18, 2697–2708.

    PubMed  CAS  Google Scholar 

  88. Shen, X.-M. and Dryhurst, G. (1996) Oxidation chemistry of (-) norepinephrine in the presence of L-cysteine.J. Med. Chem. 39, 2018–2029.

    PubMed  Article  CAS  Google Scholar 

  89. Skarpen, E., Johannessen, L.E., Bjerk, K., Fasteng, H., Guren, T.K., Lindeman, B., Thoresen, G.H., Christoffersen, T., Stang, E., Huitfeldt, H.S. and Madshus, I.H. (1998) Endocytosed epidermal growth factor (EGF) receptors contribute to the EGF-mediated growth arrest in A431 cells by inducing a sustained release of p21/CIPl.Exp. Cell. Res. 243, 161–172.

    PubMed  Article  CAS  Google Scholar 

  90. Smythies, J.R. (1996) On the function of neuromelanin.Proc. R. Soc. Lond. B. 263, 487–489.

    Article  CAS  Google Scholar 

  91. Smythies, J.R. (1997) The biochemical basis of synaptic plasticity and neurocomputation: a new theory.Proc. R. Soc. Lond. B. 264, 575–579.

    Article  CAS  Google Scholar 

  92. Smythies, J.R., Gottfries, C.-G. and Regland, B. (1997) Disturbances of one-carbon metabolism in neuropsychiatry disorders: a review.Biol. Psychiat. 41, 230–233.

    PubMed  Article  CAS  Google Scholar 

  93. Sorensen, S.D., Linseman, D.A., McEwan, EX., Heacock, A.M. and Fisher, S.K. (1998) A role for a wortmannin-sensitive phosphatidylinositol-4-kinase in the endocytosis of muscarinic cholinergic receptors.Mol. Pharmacol. 53, 827–836.

    PubMed  CAS  Google Scholar 

  94. Szekeres, P.G., Koenig, J.A. and Edw’ardson, J.M. (1998) The relationship between agonist intrinsic activity and the rate of endocytosis of muscarinic receptors in a human neuroblastoma line.Mol. Pharmacol. 53, 759–763.

    PubMed  CAS  Google Scholar 

  95. Taber, M.T. and Fibiger, H.C. (1997) Feeding-evoked dopamine release in the nucleus accumbens: regulation by glutamatergic mechanism.Neuroscience 76, 1105–1112.

    PubMed  Article  CAS  Google Scholar 

  96. Taubman, G. and Jantz, H. (1957) Untersuchung über die dem adrenochrom zugeschrieben psychotoxischen wirkungen.Nervenartz 28, 1957.

    Google Scholar 

  97. Toffa, S., Kunikowska, G.M., Zeng, B-Y, Jenner, P. and Marsden, CD. (1997) Glutathione depletion in rat brain does not cause nigrostriatal pathway degeneration.J. Neural. Trans. 104, 67–75.

    Article  CAS  Google Scholar 

  98. Vandenbulcke, F., Nouel, D., Vincent, J.R and Beaudet, A. (1998) Differential intracellular trafficking of neurotensin and of its receptor in COS-7 transfected cells.Abst. Soc. Neurosci. 24, 1592.

    Google Scholar 

  99. Vickery, R.G., Christine, C. and von Zastrow, M. (1998) Subtype-specific differences in dopamine receptor endocytosis.Abst. Soc. Neurosci. 24, 23.

    Google Scholar 

  100. von Zastrow, M. and Kobilka, B.K. (1994) Antagonist-dependent and independent steps in the mechanism of adrenergic receptor internalization.J. Biol. Chem. 269, 18,448–18,452.

    Google Scholar 

  101. Vyoral, D. and Petr’ak, J. (1998) Iron transport in K562 cells: a kinetic study using native gel electrophoresis and59Fe autoradiography.Biochim. Biophys. Acta 1403, 179–188.

    PubMed  Article  CAS  Google Scholar 

  102. White, H.L. and Wu, J.C (1975) Properties of catechl O-methyl transferases from brain and liver of rat and human.Biochem. J. 145, 135–143.

    PubMed  CAS  Google Scholar 

  103. Wolfe, L.S., Pappius, H.M. and Marion, J. (1976) The biosynthesis of prostaglandins by brain tissuein vitro.Adv. Prostaglandin Thromboxane Res. 1, 345–355.

    PubMed  CAS  Google Scholar 

  104. Yao, J.K., Reddy, R.D., van Kammen, D.P., McElhiney, L.G. and Korbanic, C.W. (1998) Reduced level of the antioxidant proteins in schizophrenia.Biol. Psychiat. 43, 123S.

    Google Scholar 

  105. Yen, G.C and Hsieh, C.C. (1997) Antioxidant effects of dopamine and related compounds.Biosci. Biotech. Biochem. 61, 1646–1649.

    CAS  Article  Google Scholar 

  106. Zapf-Colby, A. and Olefsky, J.M. (1998) Nerve growth factor processing and trafficking events following Trk-A-mediated endocytosis.Endocrinology 139, 3232–3240.

    PubMed  Article  CAS  Google Scholar 

  107. Zhang, J., Price, J.O., Graham, D.G. and Montine, T.J. (1998) Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures.Biochem. Biophys. Res. Com. 248, 812–816.

    PubMed  Article  CAS  Google Scholar 

  108. Zhao, Z.S., Khan, S. and O’Brien, P.J. (1998) Catecholic iron complexes as cytoprotective superoxide scavengers against hypoxia: reoxygenation injury in isolated hepatocytes.Biochem. Pharmacol. 56, 825–830.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Smythies.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smythies, J. The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: Functional interrelationships in health and disease: A review — discussion. neurotox res 1, 27–39 (1999). https://doi.org/10.1007/BF03033337

Download citation

Keywords

  • Dopamine
  • Endocytosis
  • Glutamate
  • Iron
  • o-quinones
  • Parkinson’s disease
  • ROS
  • Schizophrenia