Neurotoxicity Research

, Volume 1, Issue 3, pp 153–169 | Cite as

Neurotoxicity due to o-Quinones: Neuromelanin formation and possible mechanisms for o-Quinone detoxification

  • Francisco Solano
  • Vincent J. Hearing
  • Jose C. García-Borrón
Article

Abstract

o-Quinones are easily formed by oxidation of physiologically relevant catechols. These reactions mainly occur in two specialized cells, catecholaminergic neurons and melanocytes. Both types of cells are related ontogenetically, as they arise from the neural crest during the developmental differentiation. o-Quinones are used to form melanin, a protective pigment formed by different mechanisms in melanocytes and catecholaminergic neurons. However, the reactivity of these quinones makes their presence in the cytosol dangerous for the cell survival and these compounds have been proposed as degenerative and apoptotic agents. Thus, melanin-producing cells show several potential mechanisms to protect themselves against the noxious effects of o-quinones. In melanocytes, the most effective autoprotecting mechanisms are the existence of melanosomes as a confined site for melano-synthesis and the action of tyrosinase related protein 2 (TRP2) to derive L-dopachrome to 5,6-dihydroxy-indole-2-carboxylic acid minimizing the formation of 5,6-dihydroxyindole. In catecholaminergic neurons, recent data suggest that glutathione transferase (GST M2-2 isoenzyme) and macrophage migration inhibitory factor (MIF) are very effective in preventing long-lived formation of dopaminechrome and nora-drenochrome, although the detoxification reactions are different (conjugation to GSH or isomerization respectively). These mechanisms are less efficient for adrenochrome, although MIF and GST M1-1 could also catalyze similar reactions using this compound as substrate. In addition, the formation of adrenochrome is still under discussion, and adrenolutin formation could contribute to deactivate its harmful effects. The contribution of D-dopachrome tautomerase to these mechanisms is yet unknown, although in contrast to MIF, that enzyme does not recognize cate-cholaminechromes as substrates. Diaphorase could also be protective against quinones, since this enzyme catalyzes their bielectronic reduction back to catechols, thus preventing the formation of chrome species. This activity has been described in melanocytes and neurons, so that its contribution should be further investigated. In contrast to diaphorase, cytochrome P450 reductase should not be considered a protective enzyme, since its monoelectronic reduction of quinones leads to formation of semiquinones, that is even more noxious than the quinones.

Keywords

o-Quinone Neurotoxicity Neuromelanin Detoxification Dopaquinone Dopachrome Catecholamines Catecholaminechromes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Aroca, P., Solano, R, Garcia-Borron, J.C. and Lozano, J. A. (1990) Regulation of mammalian melanogenesis I. Partial purification and characterization of a dopachrome converting factor: dopachrome tautomerase.Biochim. Biophys. Acta,1035, 266–275.PubMedGoogle Scholar
  2. Aroca, P., Solano, E, Garcia-Borron, J.C. and Lozano, J.A. (1991) Specificity of dopachrome tautomerase and inhibition by carboxylated indoles.Biochem. J.,277, 393–397.PubMedGoogle Scholar
  3. Aroca, P., Solano, R, Salinas, C, Garcia-Borron, J.C. and Lozano, J.A. (1992) Regulation of the final phase of mammalian melanogenesis. The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole.Eur.J. Biochem.,208, 155–163.PubMedCrossRefGoogle Scholar
  4. Baez, S., Linderson, Y. and Segura-Aguilar, J. (1994) Superoxide dismutase and catalase prevent the formation of reactive oxygen species during reduction of cyclized dopa ortho-quinone by DT-diaphorase.Chem. Biol. Interact.,93, 103–116.PubMedCrossRefGoogle Scholar
  5. Baez, S., Linderson, Y. and Segura-Aguilar, J. (1995) Superoxide dismutase and catalase enhance autooxidation during oneelectron reduction of aminochrome by NADPH-cytochrome P-450 reductase.Biochem. Mol. Med.,54, 12–18.PubMedCrossRefGoogle Scholar
  6. Baez, S., Segura-Aguilar, J., Widersten, M., Johansson, A.S. and Mannervik, B. (1997) Glutathione transferases catalyse the detoxification of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes.Biochem. J.,324, 25–28.PubMedGoogle Scholar
  7. Battyani, Z., Xerri, L., Hassoun, J., Bonerandi, J. and Grob, J. (1993) Tyrosinase gene expression in human tissues.Pigment Cell Res.,6, 400–405.PubMedCrossRefGoogle Scholar
  8. Beal, M.R, Kowall, N.W., Ellison, D.W., Mazurek, M.R, Swartz, K.J. and Martin, J.B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid.Nature,321, 168–171.PubMedCrossRefGoogle Scholar
  9. Ben-Shachar, D., Zuk, R. and Glinka, Y. (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration.J. Neurochem.,64, 718–723.PubMedGoogle Scholar
  10. Bentley, R. and Campbell, I.M. (1974) Biological reactions of quinones. In:The Chemistry of the Quininoid Compounds. Part I, Patai (Ed.) John Wiley & Sons, London, pp. 683–736.Google Scholar
  11. Berlett, B.S. and Stadtman, E.R. (1997) Protein oxidation in aging, disease, and oxidative stress.J. Biol. Chem.,272, 20313–20316.PubMedCrossRefGoogle Scholar
  12. Blocki, R, Schlievert, P. and Wackett, L. (1992) Rat liver protein linking chemical and immunological detoxification systems.Nature,360, 269–270.PubMedCrossRefGoogle Scholar
  13. Bloom, B.R. and Bennett, B. (1966) Mechanism of a reactionin vitro associated with delay-type Hypersensitivity.Science,153, 80–82.PubMedCrossRefGoogle Scholar
  14. Breathnach, A. (1988) Extra-cutaneous melanin.Pigment Cell Res.,1, 234–237.PubMedCrossRefGoogle Scholar
  15. Carstam, R., Brinck, C, Hindemith-Augustsson, A., Rorsman, H. and Rosengren, E. (1991) The neuromelanin of the human substantia nigra.Biochim. Biophys. Acta,1097, 152–160.PubMedGoogle Scholar
  16. Chedekel, M.R., Land, E.J., Thompson, A. and Truscott, T.G. (1984) Early steps in the free radical polymerisation of 3,4-dihydroxyphenylalanine (Dopa) into melanin.J. Chem. Soc. Chem. Commun., 1170–1172.Google Scholar
  17. Comstock, K.E., Widersten, M., Hao, X.Y., Henner, D.W. and Mannervik, B. (1994) A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes.Arch. Biochem. Biophys.,311, 487–495.PubMedCrossRefGoogle Scholar
  18. Cooksey, C.J., Garratt, P.J., Land, E.J, Pavel, S., Ramsden, C.A., Riley, PA. and Smit, N.P.M. (1997) Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase.J. Biol. Chem.,272, 26226–26235.PubMedCrossRefGoogle Scholar
  19. D’Amato, R.J., Lipman, Z.P. and Snyder, S.H. (1986) Selectivity of the Parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin.Science,231, 987–989.PubMedCrossRefGoogle Scholar
  20. Dietrich, R. and Erwin, V. (1980) Biogenic amine aldehydes condensation products: tetrahydropapaverolines and tryptolines.Ann. Rev. Pharm. Toxicol.,20, 55–80.CrossRefGoogle Scholar
  21. D’Ischia, M. and Prota, G. (1997) Biosynthesis, structure and function of neuromelanin and its relation to Parkinson’s disease.Pigment Cell Res.,10, 370–376.PubMedCrossRefGoogle Scholar
  22. Fornstedt, B., Brun, A., Ropsengren, E. and Carlsson, A. (1989) The apparent autooxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra.J. Neural. Transm.1(P-D section) 279–295.CrossRefGoogle Scholar
  23. Goldgeier, M., Klein, L., Klein-Angerer, S., Moellmann, G. and Nordlund, J. (1984) The distribution of melanocytes in the leptomeninges of the human brain.J. Invest. Dermatol,82, 235–238.PubMedCrossRefGoogle Scholar
  24. Graham, D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol. Pharmacol.,14, 633–643.PubMedGoogle Scholar
  25. Haavik, J., Almas, B. and Flatmark, T. (1997) Generation of reactive oxygen species by tyrosine hydroxylase, a possible contribution to the degeneration of dopaminergic neurons?J. Neurochem.,68, 328–332.Google Scholar
  26. Haavik, J. (1997) L-DOPA is a substrate for tyrosine hydroxylase.J. Neurochem.,69, 1720–1728.PubMedCrossRefGoogle Scholar
  27. Haglund, L., Kohler, C., Haaparanta, T., Goldstein, M. and Gustafsson, J.A. (1984) Presence of NADPH-cytochrome P-450 reductase in central catecholaminergic neurons.Nature,307, 259–262.PubMedCrossRefGoogle Scholar
  28. Hastings, T.G. (1995) Enzymatic oxidation of dopamine: The role of prostaglandin H synthase.J. Neurochem.,64, 919–924.PubMedGoogle Scholar
  29. Hirsch, E., Graybiel, A.N. and Agid, Y.A. (1988) Melanized dopaminergic neurons are differentially suceptible to degeneration in Parkinson’s disease.Nature,334, 345–348.PubMedCrossRefGoogle Scholar
  30. Hirsch, E.C., Brandel, J.P., Galle, P., Javoy-Agid, F. and Agid, Y. (1991) Iron and aluminium increase in the substantia nigra of patients with Parkinson’s disease: a X-ray microanalysis.J. Neurochem,56, 446–451.PubMedCrossRefGoogle Scholar
  31. Hope, B.T., Michael, G.J., Knigge, K.M. and Vicent, S.R. (1991) Neuronal NADPH diaphorase is a nitric oxide synthase.Proc. Natl. Acad. Sci. USA,88, 2811–2814.PubMedCrossRefGoogle Scholar
  32. Inoue, S., Hasegawa, K., Ito, S., Ozeki, H., Solano, R, Jimenez-Cervantes, C, Wakamatsu, K. and Fujita, K. (1995) Antimelanoma effect of 4-S-cysteaminyIcatechol, an activated form of 4-S-cysteaminylphenol.Cancer Res.,55, 2603–2607.PubMedGoogle Scholar
  33. Jaiswal, A.K. (1994) NAD(P)H: quinone oxidoreductasel (DT diaphorase) specifically prevents the formation of benzo[a]-pyrene quinone-DNA adducts generated by cytochrome P4501A1 and P450 reductase.Proc. Natl. Acad. Sci. USA,91, 8413–8417.PubMedCrossRefGoogle Scholar
  34. Jenner, P., Dexter, D.T., Sian, J., Schapira, A.H.V. and Marsden, CD. (1992) Oxidative stress as a cause of neuronal death in Parkinson’s disease and incidental Lewy body disease.Ann. Neuro.32, S82-S87.CrossRefGoogle Scholar
  35. Jimenez-Cervantes, C, Solano, E, Kobayashi, T., Urabe, K., Hearing, V.J., Lozano, J.A. and Garcia-Borron, J.C. (1994) A new enzymatic function in the melanogenic pathway: The DHICA oxidase activity of tyrosinase related protein 1 (TRP-1).J. Biol. Chem.,269, 17993–18001.PubMedGoogle Scholar
  36. Kastner, A., Hirsch, C, Lejeune, O., Javoy-Agid, R, Rascol, O. and Agid, Y. (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content?J. Neurochem.,59, 1080–1089.CrossRefGoogle Scholar
  37. King, T.E. (1982) Ubiquinone proteins in cardiac mitochondria. In ‘Function of Quinones in Energy Conserving Systems’ (edited by B.L. Trumpower). Academic press, New York, pp. 3–25.Google Scholar
  38. Kobayashi, T., Urabe, K., Winder, A., Jimenez-Cervantes, C, Imokawa, G., Brewington, T., Solano, E, Garcia-Borron, J.C. and Hearing, V.J. (1994) Tyrosinase Related Protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis.EMBOJ.13, 5818–5825.Google Scholar
  39. Korytowski, W.L., Sarna, T. and Zareba, M. (1995) Antioxidant action of neuromelanin. The mechanism of inhibitory effect on lipid peroxidation.Arch. Biochem. Biophys.319, 142–148.Google Scholar
  40. Le Douarin, N.M. (1982)The Neural Crest. Cambridge. Cambridge University Press.Google Scholar
  41. Lerner, A. and Fitzpatrick, T.B. (1950) Biochemistry of melanin formation.Physiol. Rev.,30, 91–126.PubMedGoogle Scholar
  42. Lind, C, Hochstem, P. and Ernster, L. (1982) DT-diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide formation.Arch. Biochem. Biophys.,216, 33–40.CrossRefGoogle Scholar
  43. Linderson, Y, Baez, S. and Segura-Aguilar, J. (1994) The protective effect of superoxide dismutase and catalase against formation of reactive oxygen species during reduction of cyclized norepinephrine ortho-quinone by DT-diaphorase.Biochim. Biophys. Acta,1200, 197–204.PubMedGoogle Scholar
  44. Mann, D.M.A. and Yates, P.O. (1983) Possible role of neuromelanin in the pathogenesis of Parkinson’s disease.Mech. Aging Dev.,21, 193–203.PubMedCrossRefGoogle Scholar
  45. Mannervik, B., Awasthi, Y.C., Board, P.G., Hayes, J.D., Di Ilio, C, Ketterer, B., Listowsky, I., Morgenstern, R., Muramatsu, M., Pearson, W.R., Pickett, C.B., Sato, K., Widersten, M. and Wolf, C.R. (1992) Nomenclature for human glutathione transferases.Biochem. J.,282, 305–308.PubMedGoogle Scholar
  46. Matsunaga, J., Sinha, D., Pannell, L., Santis, C, Solano, E, Wistow, G. and Hearing, V.J. (1999) Enzyme activity of macrophage migration inhibitory factor (MIF) towards oxidized catecholamines.J. Biol. Chem.,274, 3268–3271.PubMedCrossRefGoogle Scholar
  47. Mattammal, M.B., Strong, R., Lakshmi, V.M., Chung, H.D. and Stephenson, A.H. (1995) Prostaglandin H synthetasemediated metabolism of dopamine: implication for Parkinson’s disease.J. Neurochem.,64, 1645–1654.PubMedGoogle Scholar
  48. Mikayama, T, Nakano, T, Gomi, H., Nakagawa, Y, Liu, Y, Sato, M., Iwamatsu, A., Ishii, Y, Weiser, W.Y and Ishizaka, K. (1993) Molecular cloning and functional expression of a cDNA encoding glycosylation-inhibiting factor.Proc. Natl. Acad. Sci. USA,90, 10056–10060.PubMedCrossRefGoogle Scholar
  49. Miranda, M., Botti, D., Bonfigli, A., Ventura, T. and Arcadi, A. (1984) Tyrosinase-like activity in normal human substantia nigra.Gen. Pharmacol,15, 541–544.PubMedGoogle Scholar
  50. Miranda, M., Bonfigli, A., Zarivi, O., Manilla, A., Cimini, A.M. and Arcadi, A. (1987) Restriction patterns of model DNA treated with 5,6-dihydroxyindole, a potent cytotoxic intermediate of melanin synthesis: effect of UV irradiation.Mutagenesis,2, 45–50.PubMedCrossRefGoogle Scholar
  51. Nagatsu, T. and Yoshida, M. (1988) An endogenous substance of brain, tetrahydroisoquinoline, produces Parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the negrostriatal regions.Neuroscience Lett.,87, 178–182.CrossRefGoogle Scholar
  52. Niwa, T, Takeda, N., Kaneda, N., Hashizume, Y and Nagatsu, T. (1987) Presence of tetrahydroisoquinoline in Parkinson and in normal human brain.Biochem. Biophys. Res. Commun.,144, 1084–1089.PubMedCrossRefGoogle Scholar
  53. Odh, G., Hindemith, A., Rosengren, A.M., Rosengren, E. and Rorsman, H. (1993) Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole.Biochem. Biophys. Res. Commun., 1993,197, 619–624.CrossRefGoogle Scholar
  54. Odh, C, Carstam, R., Paulson, J., Wittbjer, A., Rosengren, E. and Rorsman, H. (1994) Neuromelanin of the human substantia nigra: A mixed-type melanin.J. Neurochem.,62, 2030–2036.PubMedCrossRefGoogle Scholar
  55. Offen, D., Ziv, I., Gorodin, S., Barzilay, A., Malik, Z. and Melamed, E. (1995) Dopamine-induced programmed cell death in mouse thymocytes.Biochim. Biophys. Acta,1268, 171–177.PubMedCrossRefGoogle Scholar
  56. Offen, D., Ziv, I., Barzilai, A., Gorodin, S., Glater, E., Hochman, A. and Melamed, E. (1997) Dopamine-melanin induces apoptosis in PC12 cells; possible implications for the etiology of Parkinson’s disease.Neurochem. Int.,31, 207–216.PubMedCrossRefGoogle Scholar
  57. Okun, M.R., Donnelan, B., Edelstein, L.M., Lever, W.F. and Or, N. (1971) Peroxidase-dependent oxidation of tyrosine and dopa to melanin in neurons.Histochimie,25, 289–296.PubMedCrossRefGoogle Scholar
  58. Palumbo, A., D’Ischia, M., Misuraca, G., De Martino, L. and Prota, G. (1995) Iron and peroxide-dependent conjugation of dopamine with cysteine: oxidative routes to the novel brain metabolite 5-S-cysteinyldopamine.Biochim. Biophys. Acta,1245, 255–261.PubMedGoogle Scholar
  59. Pawelek, J. and Lerner, A. (1978) 5,6-dihydroxyindole is a melanin precursor showing potent cytotoxicity.Nature,276, 627–628.CrossRefGoogle Scholar
  60. Pearce, R.K., Owen, A., Daniel, S., Jenner, P. and Marsden, CD. (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease.J. Neural. Transm.,104, 661–677.PubMedCrossRefGoogle Scholar
  61. Prota, G. (1988) Progress in the chemistry of melanins and related metabolites.Med. Res. Rev.,8, 525–556.PubMedCrossRefGoogle Scholar
  62. Prota, G. (1992)Melanin and Melanogenesis (Academic Press, San Diego, California).Google Scholar
  63. Prota, G., D’Ischia, M. and Napolitano, A. (1998). The chemistry of melanin and related metabolites (Chapter 24). In ‘The pigmentary system’. Oxford Univ. Press, pp. 307–332.Google Scholar
  64. Rabey, J.M. and Hefti, F. (1990) Neuromelanin synthesis in rat and human substantia nigra.J. Neural. Transm. Park. Dis. Dement. Sect.,2, 1–14.PubMedCrossRefGoogle Scholar
  65. Reiderer, P., Sofic, E., Rausch, W.D., Schmidt, B., Reynolds, G.P., Jellinger, K. and Youdum, M.B.H. (1989) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brain.J. Neurochem.,52, 515–520.CrossRefGoogle Scholar
  66. Reinemer, P., Dirr, H.W., Ladenstein, R., Schaffer, J., Gallay, O. and Huber, R. (1991) The three-dimensional structure of class Pi glutathione-S-transferase in complex with glutathione sulfonate at 2.3a resolution.EMBO J.,10, 1997–2005.PubMedGoogle Scholar
  67. Riley, P.A. (1992) Materia melanica: Further Dark Thoughts.Pigment Cell Res.,5, 101–106.PubMedCrossRefGoogle Scholar
  68. Rosengren, E., Linder-Eliasson, E. and Carlsson, (1985) Detection of 5-S-cysteinyldopamine in human brain.J. Neural Trans.,63, 247–253.CrossRefGoogle Scholar
  69. Rosengren, E., Bucala, R., Arnan, P., Jacobsson, L., Odh, G., Metz, C.N. and Rorsman, H. (1996) The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction.Mol. Med.,2, 143–149.PubMedGoogle Scholar
  70. Salazar, M., Sokoloski, T.D. and Patil, P.N. (1978) Binding of dopaminergic drugs by the neuromelanin of the substantia nigra, synthetic melanins and melanin granules.Fed. Proc,36, 2403–2407.Google Scholar
  71. Salinas, C, Garcia-Borron, J.C, Solano, F. and Lozano, J.A. (1994) Dopachrome tautomerase decreases the binding of indolic melanogenesis intermediates to proteins.Biochim. Biophys. Acta,1204, 53–60.PubMedGoogle Scholar
  72. Schultzberg, M., Segura-Aguilar, J. and Lind, C. (1988) Distribution of DT-diaphorase in the rat brain: biochemical and immunohistochemical studies.Neuroscience,27, 55–57.CrossRefGoogle Scholar
  73. Segura-Aguilar, J., Baez, S., Widersten, M., Welch, C.J. and Mannervik, B. (1997) Human class Mu glutathione transferase, in particular isoenzyme M2-2, catalyze detoxification of the dopamine metabolite aminochrome.J. Biol. Chetn.,272, 5727–5731.CrossRefGoogle Scholar
  74. Smythies, J. (1996). On the function of neuromelanin.Proc. R. Soc. London B,263, 491–496.CrossRefGoogle Scholar
  75. Smythies, J. and Galzigna, L. (1998) The oxidative metabolism of catecholamines in the brain: a review.Biochim. Biophys. Acta,1380, 159–162.PubMedGoogle Scholar
  76. Solano, F. (1993). Biochemistry of mammalian pigmentation: enzymatic regulation of melanogenesis. In ‘Cell and Tissue Culture Models in Dermatological Research’ (1993) (Bernd, A., Bereiter-Hahn, J., Hevert, F. and Holzmann, H. Eds.) Springer-Verlag, Berlin, pp. 135–147.Google Scholar
  77. Spina, M.B. and Cohen, G. (1989) Dopamine turnover and glutathione oxidation: Implications for Parkinson disease.Proc. Natl. Acad. Sci. USA,86, 1398–1400.PubMedCrossRefGoogle Scholar
  78. Steel, K.P., Davidson, D.R. and Jackson, I.J. (1992) TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (C-kit ligand) is a survival factor.Development,115, 1111–1119.PubMedGoogle Scholar
  79. Sun, H.W., Bernhagen, J., Bucala, R. and Lolis, E. (1996) Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor.Proc. Natl. Acad. Sci. USA,93, 5191–5196.PubMedCrossRefGoogle Scholar
  80. Suzuki, M, Sugimoto, H., Tanaka, I. and Nishihira, J. (1997) Substrate specificity for isomerase activity of macrophage migration inhibitory factor and its inhibition by indole derivatives.J. Biochem (Tokyo),122, 1040–1045.Google Scholar
  81. Tief, K., Hahne, M., Schmidt, A. and Beermann, F. (1996) Tyrosinase, the key enzyme in melanin synthesis, is expressed in murine brain.Eur. J. Biochem.,241, 12–16.PubMedCrossRefGoogle Scholar
  82. Tief, K., Schmidt, A. and Beermann, F. (1998) New evidences for the presence of tyrosinase in substantia nigra, forebrain and midbrain.Brain Res. Mol. Brain Res.,53, 307–310.PubMedCrossRefGoogle Scholar
  83. Tsukamoto, K., Jackson, I.J., Urabe, K., Montague, P. and Hearing, V. (1992) A second tyrosinase related protein, TRP-2, is a melanogenic enzyme termed dopachrome tautomerase.EMBO J.,11, 519–526.PubMedGoogle Scholar
  84. Urabe, K., Aroca, P., Tsukamoto, K., Mascagna, D., Palumbo, A., Prota, G. and Hearing, V.J. (1994) The inherent cytotoxicity of melanin precursors: a revision.Biochim. Biophys. Acta,1221, 272–278.PubMedCrossRefGoogle Scholar
  85. Wakamatsu, K., Ito, S. and Nagatsu, T. (1991) Cysteinyldopamine is not incorporated into neuromelanin.Neuroscience Lett.,131, 57–60.CrossRefGoogle Scholar
  86. Wilczok, T, Stepien, K., Dzierzega-Lecznar, A., Zajdel, A. and Wilzok, A. (1998) Model neuromelanin as antioxidative agents during lipid peroxidation.INABIS’98 Internet World Congress, Neuroscience Section.Google Scholar
  87. Youdim, M.B., Ben-Shachar, D. and Riederer, P. (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration?.Acta Neurol. Scand.,126, 47–57.CrossRefGoogle Scholar
  88. Zareba, M., Bober, A., Korytowski, W., Zecca, L. and Sarna, T. (1995) The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems.Biochim. Biophys. Acta,1271, 343–348.PubMedGoogle Scholar
  89. Zecca, L., Pietra, R., Goj, C, Mecacci, C, Radice, D. and Sabbioni, E. (1994) Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain.J. Neurochem., 1097–1101.Google Scholar
  90. Zhang, F. and Dryhurst, G. (1994) Effects of L-cysteine and cysteinyl derivatives with dopamine-o-quinone and further insight into the oxidation chemistry of 5-S-cysteinyldopa-mine-potential relevance to idiopathic Parkinson’s disease.J. Med. Chem.,37, 1084–1098.PubMedCrossRefGoogle Scholar
  91. Zhang, M., Aman, P., Grubb, A., Panagiopoulos, I., Hindemith, A., Rosengren, E. and Rorsman, H. (1995) Cloning and sequencing of a cDNA encoding rat D-dopa-chrome tautomerase.FEBS Lett.,373, 203–206.PubMedCrossRefGoogle Scholar

Copyright information

© OPA (Overseas Publishers Association) N.V 2000

Authors and Affiliations

  • Francisco Solano
    • 1
  • Vincent J. Hearing
    • 2
  • Jose C. García-Borrón
    • 1
  1. 1.Department of Biochemistry and Molecular Biology B and Immunology, School of MedicineUniversity of MurciaMurciaSpain
  2. 2.Laboratory of Cell Biology, National Cancer InstituteNIHUSA

Personalised recommendations