Skip to main content
Log in

Dopamine agonists and analogues have an antiproliferative effect on CHO-K1 cells

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Epidemiological studies have shown a reduced incidence of cancer in Parkinson’s disease. Since nearly all parkinsonian patients with clinical impairment are treated with L-β-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine (DA)ergic agonists, a possibility exists that these therapeutic agents can influence the risk of cancer. We studied the antiproliferative effect of these therapeutic agents (and substances structurally correlated) on Chinese hamster ovary (CHO)-K1 cell growth. Among the compounds tested, apomorphine proved to be the most potent inhibitor of CHO-K1 cell growth, with an EC50 of 3.35 ± 0.12 μM. The apomorphine analogues, apocodeine and hydroxyethylnorapomorphine, were less active as inhibitors of CHO-K1 cell growth. The activity of DA, 6-hydroxydopamine (6-OHDA), phe-nylethylamine (PEA), L-DOPA and bromocriptine as antiproliferative was one order of magnitude lower than that of apomorphine while pergolide was ineffective. To test whether or not the oxidative potential of these compounds was important for their antiproliferative effect, several antioxidants were assayed. Among them, glutathione (GSH) and dithio-threitol (DTT) were effective in reversing the antiproliferative effect of apomorphine, DA, 6-OHDA and PEA, conversely they did not work with bromocriptine. GSH and DTT are sulphydryl-reducing agents; while their effect could explain the efficacy against apomorphine, DA and 6-OHDA, it is difficult to understand why they should have any effect on PEA as this substance does not react with sulphydryl groups. The oxidative potential as a mechanism of action was also questioned by the results obtained with dihydrorhodamine 123, a probe that changes its fluorescent emission wave when oxidized. None of the compounds, with the exception of 6-OHDA, had any effect on the fluorescent emission wave of the probe at the maximal concentrations used to inhibit CHO-K1 cell growth. At concentrations five times higher, apomorphine and DA generated reactive oxygen species but PEA and bromocriptine did not. These data demonstrate that the antiproliferative effect of these compounds is not due to their oxidative potential, but another mechanism must be postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

L-DOPA:

L-β-3,4-dihydroxyphenylalanine

DA:

dopamine

CHO:

Chinese hamster ovary

6-OHDA:

6-hydroxydopamine

PEA:

phenylethylamine

GSH:

glutathione

DTT:

dithiothreitol

MAO:

monoamine oxidase

DOPAC:

3,4-dihydroxyphenylacetic acid

BHA:

butylated hydroxyanisole

DMEM:

Dulbecco’s modified Eagle’s medium

EGF:

epidermal growth factor

Reference

  • Adams, E.F., Schrell, U.M., Fahlbusch, R. and Thierauf, P. (1990) Hormonal dependency of cerebral meningiomas. Part II:In vitro effect of steroids, bromocriptine and epidermal growth factor on growth of meningiomas. J. Neurosurg.73, 750–755.

    CAS  Google Scholar 

  • Baas, H., Harder, S., Burklin, E, Demisch, L. and Fischer, PA. (1998) Pharmacodynamics of levodopa coadministered with apomorphine in parkinsonian patients with end-of-dose motor fluctuations. Clin. Neuropharmacol.21((sn2)), 86–92.

    PubMed  CAS  Google Scholar 

  • Besser, G.M., Parke, L., Edwards, C.R.W., Forsyth, LA. and McNeilly, A.S. (1972) Galactorrhoea: successful treatment with reduction of plasma prolactin levels by brom-ergocryptine. Br. Med. J.3, 669–672.

    PubMed  CAS  Google Scholar 

  • Bonneville, J.F., Poulignot, D., Cattin, F, Couturier, M., Mollet, R. and Dietmann, J.L. (1982) Computed tomographic demonstration of the effects of bromocriptine on pituitary microadenoma size. Radiology143, 451–455.

    PubMed  CAS  Google Scholar 

  • Busse, E., Bartsch, O., Schneider, A. and Kornhuber, B. (1990) Influence of metoclopramide and bromocriptine upon the growth of human and murine neuroblastoma cells. Oncology47, 199–205.

    PubMed  CAS  Google Scholar 

  • Camanni, F., Massara, F, Belforte, L. and Molinatti, G.M. (1975) Changes in plasma growth hormone levels in normal and acromegalic subjects following administration of 2-bromo-alpha-ergocryptine. J. Clin. Endocrinol. Metab.40, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Cicinelli, E., Cignarelli, M., Petruzzi, D., Matteo, G., Ruccia, C. and Schonauer, L.M. (1996) Nasal spray administration of bromocriptine: pharmacology and effect on serum prolactin level in puerperal women. Gynecol. Endocrinol.10, 391–396.

    Article  PubMed  CAS  Google Scholar 

  • Clark, S. and Konstantopoulos, N. (1993) Sulphydryl agents modulate insulin- and epidermal growth factor kinase via reaction with intracellular receptor domains: differential effects on basal versus activated receptors. Biochem. J.292, 217–223.

    PubMed  CAS  Google Scholar 

  • Cohen, G. (1987) Monoamine oxidase, hydrogen peroxide, and Parkinson’s disease. Adv. Neurol.45, 119–125.

    PubMed  CAS  Google Scholar 

  • Corenblum, B. (1978) Bromocriptine in pituitary tumors. Lancet2, 786.

    Article  PubMed  CAS  Google Scholar 

  • Doshay, L.J. (1954) Problem situations in the treatment of paralysis agitans. JAMA156: 680–684.

    CAS  Google Scholar 

  • Drewett, N., Jacobi, J.M., Willgoss, D.A. and Lloyd, H.M. (1993) Apoptosis in the anterior pituitary gland of the rat: studies with estrogen and bromocriptine. Neuroendocrinology57, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Engl, J., Moule, M. and Yip, C.C. (1994) Dithiothreitol stimulates insulin receptor autophosphorylation at the juxtamembrane domain. Biochem. Biophys. Res. Com.201, 1439–1444.

    Article  PubMed  CAS  Google Scholar 

  • Ferriola, P.C., Cody, V. and Middleton Jr., E. (1989) Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure-activity relationships. Biochem. Pharmacol.38, 1617–1624.

    CAS  Google Scholar 

  • Gassen, M., Glinka, Y., Pinchasi, B. and Youdim, M.B.H. (1996) Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur. J. Pharmacol.308, 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Gorell, J.M., Johnson, C.C. and Rybicki, B.A. (1994) Parkinson’s disease and its comorbid disorders: an analysis of Michigan mortality data, 1970 to 1990. Neurology44, 1865–1868.

    PubMed  CAS  Google Scholar 

  • Graham, D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharm.14, 633–643.

    CAS  Google Scholar 

  • Graham, D.G., Tiffany, S.M., Bell Jr., W.R. and Gutknecht, W.F. (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol. Pharm.14, 644–653.

    CAS  Google Scholar 

  • Hastings, T.G. and Zigmond, M.J. (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]DA: impact of ascorbic acid and glutathione. J. Neurochem.63, 1126–1132.

    PubMed  CAS  Google Scholar 

  • Ishibashi, M., Fujisawa, M., Furue, M., Maeda, Y, Fukayama, M. and Yamaji, T. (1994) Inhibition of growth of human small cell lung cancer by bromocriptine. Cancer Res.54, 3442–3446.

    PubMed  CAS  Google Scholar 

  • Jansson, B. and Jankovic, J. (1985) Low cancer rates among patients with Parkinson’s disease. Annals Neurol.17, 505–509.

    Article  CAS  Google Scholar 

  • Kang, T-b. and Liang, N-c. (1997) Studies on the inhibitory effects of quercetin on the growth of HL-60 leukemia cells. Biochem. Pharmacol.54, 1013–1018.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, Y, Imai, Y, Holo, H., Endo, T. and Nozoe, S. (1990) suppression of tumor cell growth and mitogen response by apomorphine alkaloids, dicentrine, glaucine, corydine and apomorphineJ. Pharmacobio-Dyn.13, 426–431.

    CAS  Google Scholar 

  • Kostrzewa, R.M. and Jacobowitz, D.M. (1974) Pharmacological actions of 6-hydroxyDA. Pharmacol. Rev.26, 199–288.

    PubMed  CAS  Google Scholar 

  • Kraker, A.J., Wemple, M.J. and Moore, C.W. (1992) Effect of sulphydryl reagents on the inhibition of epidermal growth factor (EGF) receptor tyrosine kinase by erbstatin. Proceedings of the American Association for Cancer Research Vol.33, p. 512.

    Google Scholar 

  • Lai, C-T. and Yu, P.H. (1997) a DA and L-β-3, 4-dihydroxyphe-nylalanine Hydrochloride (L-DOPA)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Biochem. Pharmacol.53, 363–372.

    Article  PubMed  CAS  Google Scholar 

  • Lamberts, S.W.J., Klijn, J.G., de Quiyada, M., Timmermans, H.A., Uitterlinden, P., de Jong, EH. and Birkenhager, J.C. (1980) The mechanism of the suppressive action of bromocriptine on adrenocorticotropin secretion in patients with Cushing’s disease and Nelson’s syndrome. J. Clin. Endocrinol. Metab.51, 307–311.

    PubMed  CAS  Google Scholar 

  • Lees, A.J. (1993) Dopamine agonists in Parkinson’s disease: a look at apomorphine. Fundam. Clin. Pharmacol.7, 121–128.

    PubMed  CAS  Google Scholar 

  • Liu, J. and Mori, A. (1993) Monoamine metabolism provides an antioxidant defense in the brain against oxidant-and free radical-induced damage. Arch. Biochem. Biophys.302, 118–127.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, M.J. and Fahien, L.A. (1988) Glyceraldehyde phosphate and methyl esters of succinic acid. Diabetes37, 997–999.

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa, Y, Marui, N., Sakai, T, Satomi, Y, Yoshida, M., Matsumoto, K., Nishino, H. and Aoike, A. (1993) Genistein arrests cell cycle progression at G2-M. Cancer Res.53, 1329–1331.

    Google Scholar 

  • Michel, P.P. and Hefti, F. (1990) Toxicity of 6-hydroxyDA and DA for DAergic neurons in culture. J. Neurosci. Res.26, 428–435.

    Article  PubMed  CAS  Google Scholar 

  • Malmfors, T. and Thoenen, H. (1971) 6-Hydroxydopamine and Catecholamine Neurons. (Amsterdam: North-Holland).

    Google Scholar 

  • Mytilineou, C, Han, S-K. and Cohen, G. (1993) Toxic and protective effects of L-DOPA on mesencephalic cell cultures. J. Neurochem.61, 1470–1478.

    Article  PubMed  CAS  Google Scholar 

  • Montastruc, J.L., Rascol, O. and Senard, J.M. (1993) Current status of dopamine agonists in Parkinson’s disease management. Drugs46, 384–393.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, S., Asanura, M., Kohuo, M., Gomez-vargas, M. and Ogewa, N. (1996) Scavenging effects of dopamine agnoisis on nitric oxide radicals. J. Neuro Chem.67, 2208–2211.

    Google Scholar 

  • Nishizuka, Y (1989) Studies and prospectives of the protein kinase C family for cellular regulation. Cancer63, 1892–1903.

    Article  PubMed  CAS  Google Scholar 

  • Pardo, B., Mena, M.A., Casarejos, M.J., Paino, C.L. and Yebenes, J.G. (1995) Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants. Brain Res.682, 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Rognstad, R. (1984) Gluconeogenesis in rat hepatocytes from monomethyl succinate and other esters. Arch. Biochem. Biophys.230, 605–609.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, P.A. (1988) Catecholamine toxicity in cerebral cortex in dissociated cell culture. J. Neurosci.8, 2887–2894.

    PubMed  CAS  Google Scholar 

  • Schrell, U.M.H., Fahlbusch, R., Adams, E.F., Nomikos, P. and Reif, M. (1990) Growth of cultured human cerebral meningiomas is inhibited by dopaminergic agents. Presence of high affinity dopamine-Dl receptors. J. Clin. Endocrinol and Metab.71, 1669–1671.

    CAS  Google Scholar 

  • Seko, Y, Tanaka, Y and Tokoro, T. (1997) Apomorphine inhibits the growth-stimulating effect of retinal pigment epithelium on scleral cells in vitro. Cell Biochem. Funct.15((sn3)), 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Showalter, H.D.H., Sercel, A.D., Boguslawa, M.L., Wolfangel, CD., Ambroso, L.A., Elliott, W.L., Fry, D.W., Kraker, A.J., Howard, C.T., Lu, G.H., Moore, C.W., Nelson, J.M., Roberts, B.J., Vincent, P.W., Denny, W.A. and Thompson, A.M. (1997) Tyrosine kinase inhibitors. 6.

  • Structure-activity relationships among N- and 3-substitute 2, 2-dislenobis (lH-indoles) for inhibition of protein tyrosine kinases and comparativein vitro andin vivo studies against selected sulfur congeners. J. Med. Chem. 40, 413–426.

  • Smith, R.V. and Cook, M.R. (1974) Conversion of apocodeine to apomorphine and norapomorphine in rats. J. Pharmaceutical Sci.63, 161–162.

    Article  CAS  Google Scholar 

  • Vanacore, N., Spila-Alegiani, S., Raschetti, R. and Meco, G. (1999) Mortality cancer risk in parkinsonian patients: a population-based study. Neurology52, 395–398.

    PubMed  CAS  Google Scholar 

  • Van Laar, X, Van der Geest, R., Danhof, M, Bodde, H.E., Goossens, RH. and Roos, R.A. (1998) Stepwise intravenous infusion of apomorphine to determine the therapeutic window in patients with Parkinson’s disease. Clin. Neuro-pharmacol.21((sn3)), 152–158.

    Google Scholar 

  • Wang, B.H., Lu, Z.X. and Polya, G.M. (1997) Inhibition of eukaryote protein kinases by isoquinoline and oxazine alkaloids. Planta Med.63((sn6)), 494–498.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, T., Minamiyama, Y., Naito, Y. and Kondo, M. (1994) Antioxidant properties of bromocriptine, a dopamine agonist. J. Neurochem.62, 1034–1038.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Maggio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maggio, R., Armogida, M., Scarselli, M. et al. Dopamine agonists and analogues have an antiproliferative effect on CHO-K1 cells. neurotox res 1, 285–297 (1999). https://doi.org/10.1007/BF03033258

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033258

Keywords

Navigation