Skip to main content
Log in

Gestational exposure to methylmercury alters neurotrophin- and carbachol-stimulated phosphatidylinositide hydrolysis in cerebral cortex of neonatal rats

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neurotrophin-stimulated signal transduction through the Trk receptors has been implicated in the development and survival of the nervous system. Phospholipase Cy (PLCy) is an early downstream effector for the Trk receptors, and catalyzes the hydrolysis of phosphatidylinositides (PIs) to inositol phosphates (IPs) and diacylglycerol. The current study demonstrated that PI hydrolysis can be used as a measure of Trk stimulation in slices from neonatal rat brain, and examined changes in the ontogeny of neurotrophin-stimulated PI hydrolysis in animals exposed to MeHg during gestation. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) stimulated PI hydrolysis in neocortical and cerebellar slices from neonatal rats in a concentration-dependent manner (30–1000 ng/ml). The neurotrophin-stimulated PI hydrolysis was completely blocked by K-252a, a compound known to inhibit Trk autopho-sphorylation. To examine the effects of MeHg on PI hydrolysis, Long-Evans dams were dosed p.o. on gestational days 6–15 with 0 or 2 mg/kg/day MeHg dissolved in saline. Pups were sacrificed on postnatal days (PND) 1, 4, 10, 14, and 21 and brain slices prepared from the neocortex and cerebellum. Neurotrophin-stimulated PI hydrolysis was highest on PND 1–4 and decreased with age in slices from both regions. Prior exposure to MeHg had no effect on NT-3 or BDNF-stimulated PI hydrolysis in the cerebellum; however, in the neocortex carbachol-stimulated PI hydrolysis and NT-3-stimulated PI hydrolysis were decreased on PND 1. In addition, NT-3-stimulated PI hydrolysis was increased on PND 14 compared to controls. Nerve growth factor (NGF), which had no effect in controls, increased PI hydrolysis in MeHg exposed animals. Acute exposure to 10 μM MeHg increased basal PI hydrolysis in cortical slices and increased NT-3- and BDNF-stimulated PI hydrolysis in slices from the cerebellum. These data indicate that gestational exposure to MeHg can alter neurotrophin signaling in the neocortex at early postnatal times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Abd-Elfattah, A.A. and Shamoo, A.E. (1981) Regeneration of a functionally active rat brain muscarinic receptor by D-penicillamine after inhibition with methylmercury and mercuric chloride. Mol, Pharmacol.20, 492–497.

    CAS  Google Scholar 

  • Allendoerfer, K.L., Cabelli, R.J., Escandon, E., Kaplan, D.R., Nikolics, K. and Shatz, C.J. (1994) Regulation of neurotrophin receptors during the maturation of the mammalian visual system. J. Neurosci.14, 1795–1811.

    PubMed  CAS  Google Scholar 

  • Atchison, W.D. and Hare, M.F. (1994) Mechanisms of methyl-mercury-induced neurotoxicity. Faseb J.8, 622–629.

    PubMed  CAS  Google Scholar 

  • Balduini, W., Candura, S.M. and Costa, L.G. (1991) Regional development of carbachol-, glutamate-, norepinephrine-, and serotonin-stimulated phosphoinositide metabolism in rat brain. Develop. Brain Res.62, 115–120.

    Article  CAS  Google Scholar 

  • Barbacid, M. (1995) Structural and functional properties of the TRK family of neurotrophin receptors. Ann. NY Acad. Sci.766, 442–458.

    Article  PubMed  CAS  Google Scholar 

  • Barde, Y.-A. (1989) Trophic factors and neuron survival. Neuron2, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Barker, P.A., Lomen-Hoerth, C, Gensch, E.M., Meakin, S.O., Glass, D.J. and Shooter, E.M. (1993) Tissue-specific alternative splicing generates two isoforms of the trkA receptor. J. Biol. Chem.268, 15150–15157.

    PubMed  CAS  Google Scholar 

  • Barone, Jr. S., Haykal-Coates, N., Parran, D.K. and Tilson, H. A. (1998) Gestational exposure to methylmercury alters the developmental pattern of trk-like immunoreactivity in the rat brain and results in cortical dysmorphology. Develop. Brain Res.109, 13–31.

    Article  CAS  Google Scholar 

  • Berg, M.M., Sternberg, D.W., Parada, L.F. and Chao, M.V. (1992) K-252a inhibits nerve growth factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity. J. Biol. Chem.267, 13–16.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J., Downes, C.P. and Handey, MR. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands.Biochem. 206, 587–595.

    CAS  Google Scholar 

  • Bothwell, M. (1995) Functional interactions of neurotrophins and neurotrophin receptors. Ann. Rev. Neurosci.18, 223–253.

    Article  PubMed  CAS  Google Scholar 

  • Burbacher, T.M., Rodier, P.M. and Weiss, B. (1990) Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol. Teratol.12, 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L.W. (1980) Mercury. In: Spencer, PS. and Schaumburg, H.H. (Eds.), Experimental and Clinical Neurotoxicology (Baltimore: Williams and Wilkins), pp. 508–526.

    Google Scholar 

  • Chao, M.V. (1992) Neurotrophin receptors: a window into neuronal differentiation. Neuron9, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri, S., Kramer, K.K., Berman, N.E.J., Dalton, T.P., Andrews, G.K. and Klaassen, CD. (1995) Constitutive expression of metallothionein genes in mouse brain. Toxicol. Appl. Pharmacol.131, 144–154.

    Article  PubMed  CAS  Google Scholar 

  • Conner, J.M., Fass-Holmes, B. and Varon, S. (1994) Changes in nerve growth factor immunoreactivity following entorhinal cortex lesions: possible molecular mechanism regulating cholinergic sprouting. J. Comp. Neurol.345, 409–418.

    Article  PubMed  CAS  Google Scholar 

  • Connor, B., Young, D., Lawlor, P., Gai, W., Waldvogel, H., Faull, R.L. and Dragunow, M. (1996) Trk receptor alterations in Alzheimer’s disease. Mol. Brain Res.42, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Contreas, M.L. and Guroff, G. (1987) Calcium-dependent nerve growth factor-stimulated hydrolysis of phophoinositides in PC12 cells. J. Neurochem.48, 1466–1472.

    Article  Google Scholar 

  • Cordon-Cardo, C, Tapley, P., Jing, S., Nanduri, V, O’Rourke, E., Lamballe, F, Kovary, K., Jones, K., Reichardt, L.F. and Barbacid, M. (1991) The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell66, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Davies, A.M. (1994) The role of neurotrophins in the developing nervous system. J. Neurobiol.23, 1334–1348.

    Article  Google Scholar 

  • Denny, M.F, Hare, M.F. and Atchison, W.D. (1993) Methylmercury alters intrasynaptosomal concentrations of endogenous polyvalent cations. Toxicol. Appl. Pharmacol.122, 222–232.

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi, M.E., Mansour, N.A. and Eldefrawi, A.T. (1977) Interactions of acetylcholine receptors with organic mercury compounds. Adv. Exp. Med. Biol.84, 449–459.

    PubMed  CAS  Google Scholar 

  • Escandon, E., Soppet, D., Rosenthal, A., Mendoza-Ramirez, J.L., Szonyi, E., Burton, L.E., Henderson, C.E., Parada, L.F. and Nikolics, K. (1994) Regulation of neurotrophin receptor expression during embryonic and postnatal development. J. Neurosci.14, 2054–2068.

    PubMed  CAS  Google Scholar 

  • Fisher, S.K., Heacock, A.M. and Agranoff, B.W. (1992) Inositol lipids and signal transduction in the nervous system: an update. J. Neurochem.58, 18–38.

    Article  PubMed  CAS  Google Scholar 

  • Gunn-Moore, F.J. and Tavare, J.M. (1998) Progress toward understanding the molecular mechanisms of neurotrophic factor signalling. Cell Signal.10, 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Harada, Y. (1977) Congenital Minamata disease. In: Tsubak, R. and Irukayama, K. (Eds.), Minamata Disease: Methyl Mercury Poisoning in Minamata and Niigata (Tokyo: Kodansha), pp. 209–249.

    Google Scholar 

  • Haykal-Coates, N., Shafer, T.J., Mundy, W.R. and Barone, Jr. S. (1998) Effects of gestational methylmercury exposure on immunoreactivity of specific isoforms of PKC and enzyme activity during postnatal development in the rat brain. Develop. Brain Res.109, 33–49.

    Article  CAS  Google Scholar 

  • Heacock, A.M., Fisher, S.K. and Agranoff, B.W. (1987) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem.48, 1904–1911.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, W.H. (1957) A physiochemical rationale for the biological activity of mercury and its compounds. Ann. NY Acad. Sci.65, 454–460.

    Article  PubMed  CAS  Google Scholar 

  • Junier, M.P., Suzuki, F, Onteniente, B. and Peschanski, M. (1994) Target-deprived CNS neurons express the NGF gene while reactive glia around their axonal terminals contain low and high affinity NGF receptors. Mol. Brain Res.24, 247–260.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, D.R. and Stephens, R.M. (1994) Neurotrophin signal transduction by the Trk receptor. J. Neurobiol.25, 1404–1417.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, D.R., Martin-Zanca, D. and Parada, L.F. (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature350, 158–160.

    Article  PubMed  CAS  Google Scholar 

  • Kase, H., Iwahashi, K., Nakanishi, S., Matsuda, Y., Yamada, K., Takahashi, M., Murakata, C, Sato, A. and Kaneko, M. (1987) K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem. Biophys. Res. Commun.142, 436–440.

    Article  PubMed  CAS  Google Scholar 

  • Klein, R., Jing, S., Nanduri, V., O’Rourke, E. and Barbacid, M. (1991) The trk proto-oncogene encodes a receptor for nerve growth factor. Cell65, 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Kniisel, B. and Hefti, F (1991) K-252b is a selective and nontoxic inhibitor of nerve growth factor action on cultured brain neurons. J. Neurochem.57, 955–962.

    Article  Google Scholar 

  • Kniisel, B., Rabin, S.J., Hefti, F. and Kaplan, D.R. (1994) Regulated neurotrophin receptor responsiveness during neuronal migration and early differentiation. J. Neurosci.14, 1542–1554.

    Google Scholar 

  • Koizumi, S., Contreas, M.L., Matsuda, Y, Hama, T, Lazarovici, P. and Guroff, G. (1988) K-252a: a specific inhibitor of the action of nerve growth factor on PC12 cells. J. Neurosci.8, 715–721.

    PubMed  CAS  Google Scholar 

  • Komulainen, H. and Bondy, S.C. (1987) Increased free intrasynaptosomal Ca2+ by neurotoxic organometals: Distinctive mechanisms. Toxicol. Appl. Pharmacol.88, 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Korsching, S. (1993) The neurotrophic factor concept: a reexamination. J. Neurosci.13, 2739–2748.

    PubMed  CAS  Google Scholar 

  • Lamballe, E, Tapley, P. and Barbacid, M. (1993) trkC encodes multiple neurotrophin-3 receptors with distinct biological properties and substrate specificities. EMBOJ.12, 3083–3094.

    CAS  Google Scholar 

  • Larkfors, L., Oskarsson, A., Sundberg, J. and Ebendal, T. (1991) Methylmercury induced alterations in the nerve growth factor level in the developing brain. Dev. Brain Res.62, 287–291.

    Article  CAS  Google Scholar 

  • Li, S., Thompson, S.A. and Woods, J.S. (1996) Localization of γ-glutamylcysteine synthase mRNA expression in mouse brain following methylmercury treatment using reverse transcription in situ PCR amplification. Toxicol. Appl. Pharmacol.140, 180–187.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, H.N. and Palfrey, H.C. (1996) Neurotrophin-3 and brain-derived neurotrophic factor activate multiple signal transduction events but are not survival factors for hippocampal pyramidal neurons. J. Neurochem.67, 952–963.

    PubMed  CAS  Google Scholar 

  • Marsh, D.O., Clarkson, T.W., Cox, C, Myers, G.J., Amin, Z.L. and Al, T.S. (1987) Fetal methylmercury poisoning. Relationship between concentration in single strands of maternal hair and child effects. Arch. Neurol.44, 1017–1022.

    CAS  Google Scholar 

  • Martin-Zanca, D., Oskam, R., Matra, G., Copeland, T. and Barbacid, M. (1989) Molecular and biochemical characterization of the human trk proto-oncogene. Mol. Cell Biol.9, 24–33.

    PubMed  CAS  Google Scholar 

  • Martin-Zanca, D., Barbacid, M. and Parada, L.F. (1990) Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development. Genes Dev.4, 683–694.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, N.Q. and Chao, M.V. (1995) Structural determinants of neurotrophic action. J. Biol. Chem.34, 19669–19672.

    Google Scholar 

  • Mullaney, K.J., Fehm, M.N., Vitarella, D., Wagoner, D.E. and Aschner, M. (1994) The role of -SH groups in methyl mercuric chloride-induced D-aspartate and rubidium release from rat primary astrocyte cultures. Brain Res.641, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Mundy, W.R., Ward, T.R., Dulchinos, V.F. and Tilson, HA. (1993) Effect of repeated organophosphate administration on carbachol-stimulated phosphoinositide hydrolysis in the rat brain. Pharmacol. Biochem. Behav.45, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Nanda, D., Tolputt, J. and Collard, K.J. (1996) Changes in brain glutathione levels during postnatal development in the rat. Devel. Brain Res.94, 238–241.

    Article  CAS  Google Scholar 

  • Obermeier, A., Bradshaw, R.A., Seedorf, K., Choidas, G., Schlessinger, J. and Ullrich, A. (1994) Neuronal differentiation signals are controlled by nerve growth factor receptor/ Trk binding sites for SHC and PLC7. EMBO J.13, 1585–1590.

    PubMed  CAS  Google Scholar 

  • Reuhl, K.R. and Chang, L.W. (1979) Effects of methylmercury on the development of the nervous system: a review. Neurotoxicology1, 21–55.

    CAS  Google Scholar 

  • Ringstedt, T, Lagercrantz, H. and Persson, H. (1993) Expression of members of the trk family in the developing postnatal rat brain. Develop. Brain Res.72, 119–131.

    Article  CAS  Google Scholar 

  • Rising, L., Vitarella, D., Kimelberg, H.K. and Aschner, M. (1995) Metallothionein induction in neonatal rat primary astrocyte cultures protects against methylmercury cytotoxicity. J. Neurochem.65, 1562–1568.

    Article  PubMed  CAS  Google Scholar 

  • Rooney, TA. and Nahorski, S.R. (1987) Postnatal ontogeny of agonist and depolarization-induced phosphoinositide hydrolysis in rat cerebral cortex. J. Pharmacol. Exp. Ther.243, 333–341.

    PubMed  CAS  Google Scholar 

  • Rossi, A.D., Ahlbom, E., Ogren, S.-O., Nicotera, P. and Ceccatelli, S. (1997) Prenatal exposure to methylmercury alters locomotor activity of male but not female rats. Exp. Brain Res.117, 428–436.

    Article  PubMed  CAS  Google Scholar 

  • Rudge, J.S., Pasnikowski, E.M., Hoist, P. and Lindsay, R.M. (1995) Changes in neurotrophic factor expression and receptor activation following exposure of hippocampal neuron/astrocyte cocultures to kainic acid. J. Neurosci.15, 6856–6867.

    PubMed  CAS  Google Scholar 

  • Sarafian, T.A. (1993) Methyl mercury increases intracellular Ca2+ and inositol phosphate levels in cultured cerebellar granule neurons. J. Neurochem.61, 648–657.

    PubMed  CAS  Google Scholar 

  • Segal, R.A. and Greenberg, M.E. Intracellular signaling pathways activated by neurotrophic factors. Ann Rev Neurosci 1996;19: 463–489.

    PubMed  CAS  Google Scholar 

  • Shafer, T.J., Mundy, W.R. and Tilson, H.A. (1993) Aluminum decreases muscarinic, adrenergic, and metabotropic receptor-stimulated phosphoinositide hydrolysis in hippocampal and cortical slices from rat brain. Brain Res.629, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Shaughnessy, L.W. and Barone, Jr. S. (1997) Damage to the NBM leads to a sustained lesion-induced increase in functional NGF in the cortex. Neuroreport8, 2767–2774.

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom, S. and Ebendal, T. (1995) In vitro toxicity of methyl mercury: effects on nerve growth factor (NGF)-responsive neurons and on NGF synthesis in fibroblasts. Toxicol. Lett.75, 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, R.M., Loeb, D.M., Copeland, T.D., Pawson, T, Greene, LA. and Kaplan, D.R. (1994) Trk receptors use redundant signal transduction pathways involving SHC and PLC-7I to mediate NGF responses. Neuron12, 691–705.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S.E., Li, J. and Salton, S.R.J. (1997) Comparison of VGF and trk mRNA distributions in the developing and adult rat nervous systems. Mol. Brain Res.49, 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H. (1991) The changing scene of neurotrophic factors. Trends Neurosci.14, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Tobin, A.B., Willars, G.B. and Nahorski, S.R. (1996) Regulation and desensitization of the phophoinositidase C signalling pathway. In: Uchida, M.K. (Ed), Receptor Desensitization and Ca2+-Signaling, (Basel: S. Karger), pp. 181–206.

    Google Scholar 

  • Tsoulfas, P., Soppet, D., Escandon, E., Tessarollo, L., Mendoza-Ramirez, L., Rosenthal, A., Nikolics, K. and Parada, L.F. (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells. Neuron10, 975–990.

    Article  PubMed  CAS  Google Scholar 

  • Vetter, M.L., Martin-Zanca, D., Parada, L.F, Bishop, J.M. and Kaplan, D.R. (1991) Nerve growth factor rapidly stimulates tyrosine phophorylation of phospholipase C-7I by a kinase activity associated with the product of the trk protoonco-gene. Proc. Natl. Acad. Sci. USA8, 5650–5654.

    Article  Google Scholar 

  • Widmer, H.R., Kniisel, B. and Hefti, F. (1992) Stimulation of phosphatidylinositol hydrolysis by brain-derived neurotrophic factor and neurotrophin-3 in rat cerebral cortical neurons developing in culture. J. Neurochem.59, 2113–2124.

    PubMed  CAS  Google Scholar 

  • Widmer, H.R., Kaplan, D.R., Rabin, S.J., Beck, K.D., Hefti, F. and Kniisel, B. (1993) Rapid phosphorylation of phospholipase C7I by brain-derived neurotrophic factor and neurotrophin-3 in cultures of embryonic rat cortical neurons. J. Neurochem.60, 2111–2123.

    Article  PubMed  CAS  Google Scholar 

  • Zanoli, P., Truzzi, C, Veneri, C, Braghiroli, D. and Baraldi, M. (1994) Methyl mercury during late gestation affects temporarily the development of cortical muscarinic receptors in rat offspring. Pharmacol. Toxicol.75, 261–264.

    Article  PubMed  CAS  Google Scholar 

  • Zirrgiebel, U., Ohga, Y., Carter, B., Berninger, B., Inagaki, N., Thoenen, H. and Lindholm, D. (1995) Characterization of TrkB receptor-mediated signaling pathways in rat cerebellar granule neurons: involvement of protein kinase C in neuronal survival. J. Neurochem.65, 2241–2250.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Mundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mundy, W.R., Parran, D. & Barone, S. Gestational exposure to methylmercury alters neurotrophin- and carbachol-stimulated phosphatidylinositide hydrolysis in cerebral cortex of neonatal rats. neurotox res 1, 271–283 (1999). https://doi.org/10.1007/BF03033257

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033257

Keywords

Navigation