Skip to main content
Log in

Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: Importance for psychiatric diseases

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The direct hippocampal to prefrontal cortex pathway and its changes in synaptic plasticity is a useful framework for investigating the functional operations of hippocampal-prefrontal cortex communication in cognitive functions. Synapses on this pathway are modifiable and synaptic strength can be turned up or down depending on specific patterns of activity in the pathway. The objective of this review will be to summarize the different studies carried out on this topic including very recent data and to underline the importance of animal models for the development of new and effective medications in psychiatric diseases. We have shown that long-term potentiation (LTP) of hippocampal-pre-frontal synapses is driven by the level of mesocortical dopaminergic (DA) activity and more recently that stress is also an environmental determinant of LTP at these cortical synapses. Stimulation of the ventral tegmental area at a frequency known to evoke DA overflow in the prefrontal cortex produces a long-lasting enhancement of the magnitude of hippocampal-prefrontal cortex LTP whereas a depletion of cortical DA levels generates a dramatic decrease in this LTP. Moreover, hippocampal stimulation induces a transient but significant increase in DA release in the prefrontal cortex, and an optimal level of D1 receptor activation is essential for LTP expression. We recently investigated the impact of stress on hippocampal-prefrontal LTP and demonstrated that exposure to an acute stress causes a remarkable and long-lasting inhibition of LTP. Furthermore, we demonstrated that tianeptine, an antidepressant which has a unique mode of action, and clozapine, an atypical antipsychotic when administered at doses normally used in human testing, are able to reverse the impairment in LTP. Stressful life events have a substantial causal association with psychiatric disorders like schizophrenia and depression and recent imaging studies have shown an important role of the limbic-cortical circuit in the pathophysiology of these illnesses. Therefore, we proposed that agents capable of reversing the impairment of plasticity at hippocampal to prefrontal cortex synapses have the potential of becoming new therapeutic classes of antidepressant or antipsychotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert KA, HC Hemmings Jr, AI Adamo, SG Potkin, S Akbarian, CA Sandman, CW Cotman, WE Bunney Jr and P Greengard (2002) Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia.Arch. Gen. Psychiatry 59, 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Ariano MA, J Wang, KL Noblett, ER Larson and DR Sibley (1997) Cellular distribution of the rat D1B receptor in central nervous system using anti-receptor antisera.Brain Res. 746, 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DM, M Grubb, RM Deacon, BK Yee, J Feldon and JN Rawlins (2003) Ventral hippocampal lesions affect anxiety but not spatial learning.Behav. Brain Res. 139, 197–213.

    Article  PubMed  CAS  Google Scholar 

  • Barbas H and GJ Blatt (1995) Topographically specific hippocam-pal projections target functionally distinct prefrontal areas in the rhesus monkey.Hippocampus 5, 511–533.

    Article  PubMed  CAS  Google Scholar 

  • Berger B, P Gaspar and C Verney (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates.Trends Neurosci. 14, 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Bergson C, L Mrzljak, JF Smiley, M Pappy, R Levenson and PS Goldman-Rakic (1995) Regional, cellular and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain.J. Neurosci. 15, 7821–7836.

    PubMed  CAS  Google Scholar 

  • Berman KF, RF Zec and DR Weinberger (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention and mental effort.Arch. Gen. Psychiatry 43, 126–135.

    PubMed  CAS  Google Scholar 

  • Bremner JD, M Vythilingam, E Vermetten, A Nazeer, J Adil, S Khan, LH Staib and DS Charney (2002) Reduced volume of orbitofrontal cortex in major depression.Biol. Psychiatry 51, 273–279.

    Article  PubMed  Google Scholar 

  • Burette F, TM Jay and S Laroche (1997) Reversal of LTP in the hippocampal afferent fiber system to the prefrontal cortexin vivo with low-frequency patterns of stimulation that do not produce LTD.J. Neurophysiol. 78, 1155–1160.

    PubMed  CAS  Google Scholar 

  • Carmichael ST and JL Price (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys.J. Comp. Neurol. 363, 615–641.

    Article  PubMed  CAS  Google Scholar 

  • Carr DB and SR Sesack (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals.J. Comp. Neurol. 369, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Cassell MD and DJ Wright (1986) Topography of projections from the medial prefrontal cortex to the amygdala in the rat.Brain Res. Bull. 17, 321–333.

    Article  PubMed  CAS  Google Scholar 

  • Czeh B, T Michaelis, T Watanabe, J Frahm, G de Biurrun, M van Kampen, A Bartolomucci and E Fuchs (2001) Stress-induced changes in cerebral metabolites, hippocampal volume and cell proliferation are prevented by antidepressant treatment with tianeptine.Proc. Natl. Acad. Sci. USA 98, 12796–12801.

    Article  PubMed  CAS  Google Scholar 

  • Degenetais E, AM Thierry, J Glowinski and Y Gioanni (2003) Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: anin vivo intracellular recording study.Cereb. Cortex 13, 782–792.

    Article  PubMed  Google Scholar 

  • Delbende C, D Tranchand Bunel, G Tarozzo, M Grino, C Oliver, E Mocaer and H Vaudry (1994) Effect of chronic treatment with the antidepressant tianeptine on the hypothalamo-pituitary-adrenal axis.Eur. J. Pharmacol. 251, 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Diamond DM, MC Bennett, M Fleshner and GM Rose (1992) Inverted-U relationship between the level of peripheral corticos-terone and the magnitude of hippocampal primed burst potentia-tion.Hippocampus 2, 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Diorio D, V Viau and MJ Meaney (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothal- amic-pituitary-adrenal responses to stress.J. Neurosci. 13, 3839–3847.

    PubMed  CAS  Google Scholar 

  • Dowlatshahi D, GM MacQueen, JF Wang and LT Young (1998) Increased temporal cortex CREB concentrations and antidepres-sant treatment in major depression.Lancet 352, 1754–1755.

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, GR Heninger and EJ Nestler (1997) A molecular and cellular theory of depression.Arch. Gen. Psychiatry 54, 597–606.

    PubMed  CAS  Google Scholar 

  • Floresco SB, JK Seamans and AG Phillips (1997) Selective roles for hippocampal, prefrontal cortical and ventral striatal circuits in radial-arm maze tasks with or without a delay.J. Neurosci. 17, 1880–1890.

    PubMed  CAS  Google Scholar 

  • Gabbott P, A Headlam and S Busby (2002) Morphological evidence that CA1 hippocampal afferents monosynaptically innervate PV-containing neurons and NADPH-diaphorase reactive cells in the medial prefrontal cortex (Areas 25/32) of the rat.Brain Res. 946, 314–322.

    Article  PubMed  CAS  Google Scholar 

  • Garcia R (2001) Stress, hippocampal plasticity and spatial learning.Synapse 40, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Garris PA, LB Collins, SR Jones and RM Wightman (1993) Evoked extracellular dopaminein vivo in the medial prefrontal cortex.J. Neurochem. 61, 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, B Bloch and C Le Moine (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons.Eur. J. Neurosci. 7, 1050–1063.

    Article  PubMed  CAS  Google Scholar 

  • Gerber DJ, D Hall, T Miyakawa, S Demars, JA Gogos, M Karayiorgou and S Tonegawa (2003) Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit.Proc. Natl. Acad. Sci. USA 100, 8993–8998.

    Article  PubMed  CAS  Google Scholar 

  • Goldapple K, Z Segal, C Garson, M Lau, P Bieling, S Kennedy and H Mayberg (2004) Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy.Arch. Gen. Psychiatry 61, 34–41.

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS, EC Muly 3rd and GV Williams (2000) D(1) receptors in prefrontal cells and circuits.Brain Res. Brain Res. Rev. 31, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Islas C and JJ Hablitz (2003) Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex.J. Neurosci. 23, 867–875.

    PubMed  CAS  Google Scholar 

  • Gurden H, JP Tassin and TM Jay (1999) Integrity of the mesocorti-cal dopaminergic system is necessary for complete expression ofin vivo hippocampal-prefrontal cortex long-term potentiation.Neuroscience 94, 1019–1027.

    Article  PubMed  CAS  Google Scholar 

  • Gurden H, M Takita and TM Jay (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term poten-tiation at hippocampal-prefrontal cortex synapsesin vivo.J. Neurosci. 20, RC106, 1–5.

    Google Scholar 

  • Harrison PJ (2002) The neuropathology of primary mood disorder.Brain 125, 1428–1449.

    Article  PubMed  Google Scholar 

  • Hastings RS, RV Parsey, MA Oquendo, V Arango and JJ Mann (2004) Volumetric analysis of the prefrontal cortex, amygdala and hippocampus in major depression.Neuropsychopharmacol-ogy 29, 952–959.

    Article  Google Scholar 

  • Heckers S, SL Rauch, D Goff, CR Savage, DL Schacter, AJ Fischman and NM Alpert (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia.Nat. Neurosci. 1, 318–323.

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA and HJ Groenewegen (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics.Neurosci. Biobehav. Rev. 27, 555–579.

    Article  PubMed  Google Scholar 

  • Holcomb HH, AC Lahti, DR Medoff, M Weiler, RF Dannals and CA Tamminga (2000) Brain activation patterns in schizophrenic and comparison volunteers during a matched-performance auditory recognition task.Am. J. Psychiatry 157, 1634–1645.

    Article  PubMed  CAS  Google Scholar 

  • Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms.Prog. Neurobiol. 69, 375–390.

    Article  PubMed  CAS  Google Scholar 

  • Jay TM and MP Witter (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport ofPhaseolus vulgaris-leuco-agglutinin. J. Comp. Neurol.313, 574–586.

    Article  PubMed  CAS  Google Scholar 

  • Jay TM, J Glowinski and AM Thierry (1989) Selectivity of the hip-pocampal projection to the prelimbic area of the prefrontal cortex in the rat.Brain Res. 505, 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Jay TM, AM Thierry, L Wiklund and J Glowinski (1992) Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampo-prefrontal cortex transmission.Eur. J. Neurosci. 4, 1285–1295.

    Article  PubMed  Google Scholar 

  • Jay TM, F Burette and S Laroche (1995a) NMDA receptor-dependent long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortex in the rat.Eur. J. Neurosci. 7, 247–250.

    Article  PubMed  CAS  Google Scholar 

  • Jay TM, J Glowinski and AM Thierry (1995b) Inhibition of hip-pocampo-prefrontal cortex excitatory responses by the mesocor-tical DA system.Neuroreport 6, 1845–1848.

    Article  PubMed  CAS  Google Scholar 

  • Jay TM, F Burette and S Laroche (1996a) Plasticity of the hip-pocampal-prefrontal cortex synapses.J. Physiol. Paris 90, 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Jay TM, F Burette and S Laroche (1996b) Dopaminergic modulation of long-term potentiation in the hippocampal-prefrontal cortex pathway.Society for Neuroscience Abstr. 22: 322.

    Google Scholar 

  • Jay TM, H Gurden and T Yamaguchi (1998) Rapid increase in PKA activity during long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortexin vivo. Eur. J. Neurosci. 10, 3302–3306.

    Article  CAS  Google Scholar 

  • Jay TM, H Gurden, C Rocher, M Hotte and M Spedding (2004) Up and down regulation of synaptic strength at hippocampal to pre-frontal cortex synapses. In:The Prefrontal Cortex: From Synapse to Cognition (Otani S, Ed.) (Kluwer: City). pp 107–130.

    Chapter  Google Scholar 

  • Kennedy SH, KR Evans, S Kruger, HS Mayberg, JH Meyer, S McCann, AI Arifuzzman, S Houle and FJ Vaccarino (2001) Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression.Am. J. Psychiatry 158, 899–905.

    PubMed  CAS  Google Scholar 

  • Khan ZU, A Gutierrez, R Martin, A Penafiel, A Rivera and A de la Calle (2000) Dopamine D5 receptors of rat and human brain.Neuroscience 100, 689–699.

    Article  PubMed  CAS  Google Scholar 

  • Kjelstrup KG, FA Tuvnes, HA Steffenach, R Murison, EI Moser and MB Moser (2002) Reduced fear expression after lesions of the ventral hippocampus.Proc. Natl. Acad. Sci. USA 99, 10825–10830.

    Article  PubMed  CAS  Google Scholar 

  • Krebs MO, O Guillin, MC Bourdell, JC Schwartz, JP Olie, MF Poirier and P Sokoloff (2000) Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia.Mol. Psychiatry 5, 558–562.

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, HH Holcomb, MA Weiler, DR Medoff, KN Frey, M Hardin and CA Tamminga. (2004) Clozapine but not haloperidol re-establishes normal task-activated rCBF patterns in schizophrenia within the anterior cingulate cortex.Neuropsychopharm-acology 29, 171–178.

    Article  CAS  Google Scholar 

  • Laroche S, TM Jay and AM Thierry (1990) Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region.Neurosci. Lett. 114, 184–190.

    Article  PubMed  CAS  Google Scholar 

  • Lee H, FI Tarazi, M Chakos, H Wu, M Redmond, JM Alvir, BJ Kinon, R Bilder, I Creese and JA Lieberman (1999) Effects of chronic treatment with typical and atypical antipsychotic drugs on the rat striatum.Life Sci. 64, 1595–1602.

    Article  PubMed  CAS  Google Scholar 

  • Lu XY, L Churchill and PW Kalivas (1997) Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area.Synapse 25, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Lupien SJ, M de Leon, S de Santi, A Convit, C Tarshish, NP Nair, M Thakur, BS McEwen, RL Hauger and MJ Meaney (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits.Nat. Neurosci. 1, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, BS McEwen, G Flugge and E Fuchs (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews.J. Neurosci. 16, 3534–3540.

    PubMed  CAS  Google Scholar 

  • Magarinos AM, A Deslandes and BS McEwen (1999) Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress.Eur. J. Pharmacol. 371, 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Manji HK, WC Drevets and DS Charney (2001) The cellular neu-robiology of depression.Nat. Med. 7, 541–547.

    Article  PubMed  CAS  Google Scholar 

  • Manji HK, II Gottesman and TD Gould (2003) Signal transduction and genes-to-behaviors pathways in psychiatric diseases.Sci. STKE, pe49.

  • Maroun M and G Richter-Levin (2003) Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathwayin vivo. J. Neurosci.23, 4406–4409.

    PubMed  CAS  Google Scholar 

  • Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression.J. Neuropsychiatry Clin. Neurosci. 9, 471–478..

    PubMed  CAS  Google Scholar 

  • Mayberg HS, SK Brannan, JL Tekell, JA Silva, RK Mahurin, S McGinnis and PA Jerabek (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response.Biol. Psychiatry 48, 830–843.

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plasticity.Annu. Rev. Neurosci. 22, 105–122.

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2000) Allostasis and allostatic load: implications for neuropsychopharmacology.Neuropsychopharmacology 22, 108–124.

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY and SR McGurk (1999) The effects of clozapine, risperidone and olanzapine on cognitive function in schizophrenia.Schizophr. Bull. 25, 233–255.

    PubMed  CAS  Google Scholar 

  • Mizoguchi K, M Yuzurihara, A Ishige, H Sasaki, DH Chui and T Tabira (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction.J. Neurosci. 20, 1568–1574.

    PubMed  CAS  Google Scholar 

  • Montague PR, P Dayan and TJ Sejnowski (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning.J. Neurosci. 16, 1936–1947.

    PubMed  CAS  Google Scholar 

  • Ongur D and JL Price (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.Cereb. Cortex 10, 206–219.

    Article  PubMed  CAS  Google Scholar 

  • Pavlides C, S Ogawa, A Kimura and BS McEwen (1996) Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices.Brain Res. 738, 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, S Ahn and SB Floresco (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task.J. Neurosci. 24, 547–553.

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska G, JJ Miguel-Hidalgo, J Wei, G Dilley, SD Pittman, HY Meltzer, JC Overholser, BL Roth and CA Stockmeier (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.Biol. Psychiatry 45, 1085–1098.

    Article  PubMed  CAS  Google Scholar 

  • Richmond MA, BK Yee, B Pouzet, L Veenman, JN Rawlins, J Feldon and DM Bannerman (1999) Dissociating context and space within the hippocampus: effects of complete, dorsal and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning.Behav. Neurosci. 113, 1189–1203.

    Article  PubMed  CAS  Google Scholar 

  • Rocher C, M Spedding and TM Jay (2003) Acute low dose of clozapine prevents stress-induced impairment of synaptic plasticity at hippocampal to prefrontal cortex synapses.Society for Neuroscience Abstr.848: 5.

    Google Scholar 

  • Rocher C, M Spedding, C Munoz and TM Jay (2004) Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants.Cereb. Cortex 14, 224–229.

    Article  PubMed  Google Scholar 

  • Rosene DL and GW Van Hoesen (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey.Science 198, 315–317.

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, SB Floresco and AG Phillips (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat.J. Neurosci. 18, 1613–1621.

    PubMed  CAS  Google Scholar 

  • Seamans JK, D Durstewitz, BR Christie, CF Stevens and TJ Sejnowski (2001) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons.Proc. Natl. Acad. Sci. USA 98, 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, AY Deutch, RH Roth and BS Bunney (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin.J. Comp. Neurol. 290, 213–242.

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, CL Snyder and DA Lewis (1995) Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex.J. Comp. Neurol. 363, 264–280.

    Article  PubMed  CAS  Google Scholar 

  • Shakesby AC, R Anwyl and MJ Rowan (2002) Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents.J. Neurosci. 22, 3638–3644.

    PubMed  CAS  Google Scholar 

  • Sheline YI, M Sanghavi, MA Mintun and MH Gado (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression.J. Neurosci. 19, 5034–5043.

    PubMed  CAS  Google Scholar 

  • Smiley JF, AI Levey, BJ Ciliax and PS Goldman-Rakic (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines.Proc. Natl. Acad. Sci. USA 91, 5720–5724.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan RM and A Gratton (2002) Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters.Psychoneuroendocrin-ology 27, 99–114.

    Article  CAS  Google Scholar 

  • Suri RE and W Schultz (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.Neuroscience 91, 871–890.

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1981) A direct projection from Ammon’s horn to pre-frontal cortex in the rat.Brain Res. 217, 150–154.

    Article  PubMed  CAS  Google Scholar 

  • Szeszko PR, RD Strous, RS Goldman, M Ashtari, KH Knuth, JA Lieberman and RM Bilder (2002) Neuropsychological correlates of hippocampal volumes in patients experiencing a first episode of schizophrenia.Am. J. Psychiatry 159, 217–226.

    Article  PubMed  Google Scholar 

  • Szeszko PR, E Goldberg, H Gunduz-Bruce, M Ashtari, D Robinson, AK Malhotra, T Lencz, J Bates, DT Crandall, JM Kane and RM Bilder (2003) Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia.Am. J. Psychiatry 160, 2190–2197.

    Article  PubMed  Google Scholar 

  • Taepavarapruk P and AG Phillips (2001) Role of the prefrontal cortex and ventral tegmental area in mediating release of dopamine in the nucleus accumbens evoked by stimulation of the ventral subiculum, In:Monitoring Molecules in Neuroscience. Proceedingsings of the 9th International Conference on in vivo Methods (O’Connor WT, JP Lowry, JJ O’Connor and RD O’Neill, Eds.) (University College of Dublin: Dublin, Ireland), pp 223–224.

    Google Scholar 

  • Takahashi M, O Shirakawa, K Toyooka, N Kitamura, T Hashimoto, K Maeda, S Koizumi, K Wakabayashi, H Takahashi, T Someya and H Nawa (2000) Abnormal expression of brain-derived neu-rotrophic factor and its receptor in the corticolimbic system of schizophrenic patients.Mol. Psychiatry 5, 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Takita M, Y Izaki, TM Jay, H Kaneko and SS Suzuki (1999) Induction of stable long-term depressionin vivo in the hip-pocampal-prefrontal cortex pathway.Eur. J. Neurosci. 11, 4145–4148.

    Article  PubMed  CAS  Google Scholar 

  • Tamamaki N and Y Nojyo (1995) Preservation of topography in the connections between the subiculum, field CA1 and the entorhi-nal cortex in rats.J. Comp. Neurol. 353, 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Tamminga C and DR Medoff (2002) Studies in schizophrenia: pathophysiology and treatment.Dialogues Clin. Neurosci. 4, 432–437.

    Google Scholar 

  • Trentani A, SD Kuipers, GJ Ter Horst and JA Den Boer (2002) Selective chronic stress-inducedin vivo ERK1/2 hyperphospho-rylation in medial prefrontocortical dendrites: implications for stress-related cortical pathology?Eur. J. Neurosci. 15, 1681–1691.

    Article  PubMed  CAS  Google Scholar 

  • Van Eden CG, EM Hoorneman, RM Buijs, MA Matthijssen, M Geffard and HB Uylings (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level.Neuroscience 22, 849–862.

    Article  PubMed  Google Scholar 

  • Vermetten E and JD Bremner (2002) Circuits and systems in stress. I. Preclinical studies.Depress. Anxiety 15, 126–147.

    Article  PubMed  Google Scholar 

  • Wang J and P O’Donnell (2001) D(1) dopamine receptors potentiate nmda-mediated excitability increase in layer V prefrontal cortical pyramidal neurons.Cereb. Cortex 11, 452–462.

    Article  PubMed  CAS  Google Scholar 

  • Wang M, S Vijayraghavan and PS Goldman-Rakic (2004) Selective D2 receptor actions on the functional circuitry of working memory.Science 303, 853–856.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, E Gould and BS McEwen (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons.Brain Res. 588, 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Weickert CS, TM Hyde, BK Lipska, MM Herman, DR Weinberger and JE Kleinman (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia.Mol. Psychiatry 8, 592–610.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, KF Berman, R Suddath and EF Torrey (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins.Am. J. Psychiatry 149, 890–897.

    PubMed  CAS  Google Scholar 

  • Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration.J. Neurobiol. 49, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Williams GV and PS Goldman-Rakic (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex.Nature 376, 572–575.

    Article  PubMed  CAS  Google Scholar 

  • Witter MP, HJ Groenewegen, FH Lopes da Silva and AH Lohman (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region.Prog. Neurobiol. 33, 161–253.

    Article  PubMed  CAS  Google Scholar 

  • Witter MP, PA Naber, T Van Haeften, WCM Machielsen, SARB Rombouts, Barkhof, Scheltens and FH Lopes da Silva (2000) Cortico-hippocampal communication by way of parallel parahip-pocampal-subicular pathways.Hippocampus 10, 398–410.

    Article  PubMed  CAS  Google Scholar 

  • Woodson JC, D Macintosh, M Fleshner and DM Diamond (2003) Emotion-induced amnesia in rats: working memory-specific impairment, corticosterone-memory correlation and fear versus arousal effects on memory.Learn. Mem. 10, 326–336.

    Article  PubMed  Google Scholar 

  • Xu L, C Holscher, R Anwyl and MJ Rowan (1998) Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress.Proc. Natl. Acad. Sci. USA 95, 3204–3208.

    Article  PubMed  CAS  Google Scholar 

  • Zahrt J, JR Taylor, RG Mathew and AF Arnsten (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance.J. Neurosci. 17, 8528–8535.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thérèse M. Jay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jay, T.M., Rocher, C., Hotte, M. et al. Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: Importance for psychiatric diseases. neurotox res 6, 233–244 (2004). https://doi.org/10.1007/BF03033225

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033225

Keywords

Navigation