Skip to main content
Log in

Hippocampal glutamate receptors in fear memory consolidation

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

It is thought that activity-dependent changes in synaptic efficacy driven by biochemical pathways responsive to the action of the excitatory neuro-transmitter glutamate are critical components of the mechanisms responsible for memory formation. In particular, the early activation of the NMDA (rNMDA) and AMPA (rAMPA) subtypes of ionotropic glutamate receptors has been demonstrated to be a necessary event for the acquisition of several types of memory. In the rat, consolidation of the long-term memory for a one-trial, step-down inhibitory avoidance task is blocked by antagonists of the rNMDA and rAMPA infused into the CA1 region of the dorsal hippocampus early after training and is associated with a rapid and reversible increase in the total number of [3H]AMPA binding sites. The learning-induced increase in [3H]AMPA is accompanied by translocation of the GluR1 subunit of the rAMPA to the post-synaptic terminal together with its phosphorylation at Ser831. In addition, learning of the mentioned fear-motivated task induces the activation and rNMDA-dependent translocation of CaMKII to the post-synaptic density. Inhibition of this protein kinase as well as blockade of the rNMDA abolishes both learning-induced translocation of GluR1 and its phosphorylation.

Our data suggest that learning of an avoidance task enhances hippocampal rAMPA signaling through rNMDA and CaMKII-dependent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barria A, D Muller, V Derkach, L Griffith and T Soderling (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation.Science 276, 2042–2045.

    Article  PubMed  CAS  Google Scholar 

  • Bayer K, P De Koninck, A Leonard, J Hell and H Schulman (2001) Interaction with the NMDA receptor locks CaMKII in an active conformation.Nature 411, 801–805.

    Article  PubMed  CAS  Google Scholar 

  • Bevilaqua L, P Ardenghi, N Schroder, E Bromberg, PK Schmitz, E Schaeffer, J Quevedo, M Bianchin, R Walz, JH Medina and I Izquierdo (1997) Drugs acting upon the cyclic adenosine monophosphate/protein kinase A signalling pathway modulate memory consolidation when given late after training into rat hippocampus but not amygdala.Behav. Pharmacol. 8, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Bevilaqua LR, M Cammarota, G Paratcha, ML de Stein, I Izquierdo and JH Medina (1999) Experience-dependent increase in cAMP-responsive element binding protein in synaptic and nonsynaptic mitochondria of the rat hippocampus.Eur. J. Neurosci. 11, 3753–3756.

    Article  PubMed  CAS  Google Scholar 

  • Braun A and H Schulman (1995) The multifunctional Ca2+/calmod-ulin-dependent protein kinase, from form to function.Annu. Rev. Physiol. 57, 417–4452.

    Article  PubMed  CAS  Google Scholar 

  • Brun V, K Ytterbo, R Morris, M Moser and E Moser (2001) Retrograde amnesia for spatial memory induced by NMDA receptor-mediated long-term potentiation.J. Neurosci. 21, 356–362.

    PubMed  CAS  Google Scholar 

  • Cammarota M, I Izquierdo, C Wolfman, M Levi de Stein, R Bernabeu, D Jerusalinsky and JH Medina (1995) Inhibitory avoidance training induces rapid and selective changes in [3H]AMPA receptor binding in the rat hippocampal formation.Neurobiol. Learn. Mem. 64, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, G Paratcha, M Levi de Stein, R Bernabeu, I Izquierdo and JH Medina (1997). B-50/GAP-43 phosphorylation and PKC activity are increased in rat hippocampal synaptosomal membranes after an inhibitory avoidance training.Neurochem. Res. 22, 499–505.

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, R Bernabeu, M Levi De Stein, I Izquierdo and JH Medina (1998) Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity.Eur. J. Neurosci. 10, 2669–2676.

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, G Paratcha, LR Bevilaqua, M Levi de Stein, M Lopez, A Pellegrino de Iraldi, I Izquierdo and JH Medina (1999) Cyclic AMP-responsive element binding protein in brain mitochondria.J. Neurochem.72, 2272–2277.

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, LR Bevilaqua, P Ardenghi, G Paratcha, M Levi de Stein, I Izquierdo and JH Medina (2000a) Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning, abolition by NMDA receptor blockade.Brain Res. Mol. Brain Res. 76, 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Cammarota M, ML de Stein, G Paratcha, LR Bevilaqua, I Izquierdo and JH Medina (2000b) Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus.Neurochem. Res. 25, 567–572.

    Article  PubMed  CAS  Google Scholar 

  • De Koninck P and H Schulman (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations.Science 279, 227–230.

    Article  PubMed  Google Scholar 

  • Fukunaga K, L Stoppini, E Miyamoto and D Muller (1993) Long term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II.J. Biol. Chem. 268, 7863–7867.

    PubMed  CAS  Google Scholar 

  • Fukunaga K, D Muller and E Miyamoto (1995) Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentia-tion.J. Biol. Chem. 270, 6119–6124.

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga K, D Muller D and E Miyamoto (1996) CaM kinase II in long-term potentiation.Neurochem. Int. 28, 343–358.

    Article  PubMed  CAS  Google Scholar 

  • Hanson P and H Schulman (1992) Neuronal Ca2+/calmodulin-dependent protein kinases.Annu. Rev. Biochem. 61, 559–601.

    Article  PubMed  CAS  Google Scholar 

  • Hanson P, T Meyer, L Stryer and H Schulman (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals.Neuron 12, 943–956.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, S Shi, J Esteban, A Piccini, J Poncer and R Malinow (2000) Driving AMPA receptors into synapses by LTP and CaMKII, requirement for GluR1 and PDZ domain interaction.Science 287, 2262–2267.

    Article  PubMed  CAS  Google Scholar 

  • Hinds H, S Tonegawa and R Malinow (1998) CA1 long-term potentiation is diminished but present in hippocampal slices from aCaMKII mutant mice.Learn. Mem. 5, 344–354.

    PubMed  CAS  Google Scholar 

  • Holscher C (1999) Synaptic plasticity and learning and memory, LTP and beyond.J. Neurosci. Res. 58, 62–75.

    Article  PubMed  CAS  Google Scholar 

  • Isaac JT, RA Nicoll and RC Malenka (1995) Evidence for silent synapses, implications for the expression of LTP.Neuron 15, 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Isaac JT, SH Oliet, GO Hjelmstad, RA Nicoll and RC Malenka (1996) Expression mechanisms of long-term potentiation in the hippocampus.Physiol. (Paris) 90, 299–303.

    Article  CAS  Google Scholar 

  • Liao D, R Scannevin and R Huganir (2001) Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors.J. Neurosci. 21, 6008–6017.

    PubMed  CAS  Google Scholar 

  • Lin B, FA Brucher, LL Colgin and G Lynch (2002) Long-term potentiation alters the modulator pharmacology of AMPA-type glutamate receptors.J. Neurophysiol. 87, 2790–2800.

    PubMed  CAS  Google Scholar 

  • Lisman J, H Schulman and H Cline (2002) The molecular basis of CaMKII function in synaptic and behavioural memory.Nat. Rev. Neurosci. 3, 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Lledo P, G Hjelmstad, S Mukherfi, T Soderling, R Malenka and R Nicoll (1995) Ca2+/calmodulin-dependent protein kinase II and long-term potentiation enhance synaptic transmission by the same mechanism.Proc. Natl. Acad. Sci. USA 92, 11175–11179.

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC and RA Nicoll (1993) NMDA-receptor-dependent synaptic plasticity, multiple forms and mechanisms.Trends Neurosci. 16, 521–527.

    Article  PubMed  CAS  Google Scholar 

  • Mammen A, K Kameyama, K Roche and R Huganir (1997) Phosphorylation of the ?-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II.J. Biol. Chem. 272, 32528–32533.

    Article  PubMed  CAS  Google Scholar 

  • Martin S, P Grimwood and R Morris (2000) Synaptic plasticity and memory, an evaluation of the hypothesis.Annu. Rev. Neurosci. 23, 649–711.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA and RC Malenka (1999) Expression mechanisms underlying NMDA receptor-dependent long-term potentiation.Ann. NY Acad. Sci. 868, 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Otmakhov N, L Griffith and J Lisman (1997) Postsynaptic inhibitors of Ca2+/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing induced long-term potentiation.J. Neurosci. 17, 5357–5365.

    PubMed  CAS  Google Scholar 

  • Ouyang Y, A Rosenstein, G Kreiman, E Schuman and M Kennedy (1999) Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons.J. Neurosci. 19, 7823–7833.

    PubMed  CAS  Google Scholar 

  • Paratcha G, M Furman, L Bevilaqua, M Cammarota, M Vianna, ML de Stein, I Izquierdo and JH Medina (2000) Involvement of hippocampal PKCbetaI isoform in the early phase of memory formation of an inhibitory avoidance learning.Brain Res. 855, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G and C Watson (1986)The Rat in Stereotaxic Coordinates (Academic Press, San Diego, USA).

    Google Scholar 

  • Sacchetti B, C Lorenzini, E Baldi, C Bucherelli, M Roberto, G Tassoni and M Brunelli (2001) Long-lasting hippocampal poten-tiation and contextual memory consolidation.Eur. J. Neurosci. 13, 2291–2298.

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Y Hayashi, R Petralia, S Zaman, R Wenthold, K Svoboda and R Malinow (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation.Science 284, 1811–1816.

    Article  PubMed  CAS  Google Scholar 

  • Soderling TR and VA Derkach (2000) Postsynaptic protein phosphorylation and LTP.Trends Neurosci. 23, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Strack S and R Colbran (1998) Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of theN-methyl-D-aspartate receptor.J. Biol. Chem. 273, 20689–20692.

    Article  PubMed  CAS  Google Scholar 

  • Tan S, R Wenthold and T Soderling (1994) Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-depend-ent protein kinase II and protein kinase C in cultured hippocam-pal neurons.J. Neurosci. 14, 1123–1129.

    PubMed  CAS  Google Scholar 

  • Wang J and P Kelly (1995) Postsynaptic injection of Ca2+/calmod-ulin induces synaptic potentiation requiring CaMKII and PKC activity.Neuron 15, 443–452.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Cammarota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cammarota, M., Bevilaqua, L.R.M., Bonini, J.S. et al. Hippocampal glutamate receptors in fear memory consolidation. neurotox res 6, 205–211 (2004). https://doi.org/10.1007/BF03033222

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033222

Keywords

Navigation