Skip to main content

Advertisement

Log in

Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

We characterized undifferentiated (UN) and three differentiation conditions of the SH-SY5Y neuroblastoma cell line for phenotypic markers of dopaminergic cells, sensitivity to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP), the requirement to utilize the dopamine (DA) transporter (DAT) for MPP toxicity, and the neuroprotective effects of pramipexole. Cells were differentiated with retinoic acid (RA), 12-O-tetradecanoly-phorbol-13-acetate (TPA), and RA followed by TPA (RA/TPA). RA/TPA treated cells exhibited the highest levels of tyrosine hydroxylase and DAT but lower levels of vesicular monoamine transporter. The kinetics of [3H]DA uptake and [3H]MPP uptake to DAT in RA/TPA differentiated cells were similar to that of rat and mouse caudate-putamen synaptosomes. RA/TPA differentiated cells evidenced high sensitivity to the neurotoxic effects of MPP (0.03 to 3.0 mM), and the neurotoxic effects of MPP were blocked with the DAT inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909). DA-induced cell death was not more sensitive in RA vs RA/TPA differentiated cells and was not inhibited by transporter inhibitors. RA/TPA differentiated cells exhibited 3- fold and 6-fold higher levels, respectively, of DA D2 and D3 receptors than UN or RA differentiated cells. Pretreatment with pramipexole was protective against MPP in the RA/TPA differentiated cells but not in undifferentiated or RA differentiated cells. The neuroprotective effect of pramipexole was concentration-dependent and dopamine D2/D3 receptor dependent. In contrast, protection by pramipexole against DA was not DA receptor dependent. Further characterization of the neuroprotective effects of DA agonists in this model system can provide unique information about DA receptor dependent and independent mechanisms of neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammer H and R Schulz (1994) Retinoic acid-induced differentiation of human neuroblastoma SH-SY5Y cells is associated with changes in the abundance of G proteins.J. Neurochem. 62, 1310–1318.

    PubMed  CAS  Google Scholar 

  • Anderson, DW, T Neavin, JA Smith and JS Schneider (2001) Neuroprotective effects of pramipexole in young and aged MPTP-treated mice.Brain Res. 905, 44–53.

    Article  PubMed  CAS  Google Scholar 

  • Biedler JL, S Roffler-Tarlov., M Schachner and LS Freedman (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones.Cancer Res. 38, 3751–3757.

    PubMed  CAS  Google Scholar 

  • Bilsland J, S Roy, S Xanthoudakis, DW Nicholson, Y Han, E Grimm, F Hefti and SJ Harper (2002) Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons.J. Neurosci. 22, 2637–2649.

    PubMed  CAS  Google Scholar 

  • Blum D, S Torch, N Lambeng, M Nissou, AL Benabid, R Sadoul and JM Verna (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease.Prog. Neurobiol. 65, 135–172.

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, CC Chiueh, SP Markey, MH Ebert, DM Jacobowitz and IJ Kopin (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra byN-methyl-4- phenyl-1,2,3,6-tetrahydropyridine.Proc. Natl. Acad. Sci. USA 80, 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  • Carvey PM and ZD Ling (1997) The case for neuroprotection with dopamine agonistsClin. Neuropharmacol. 20 [Suppl.], S8-S21.

    CAS  Google Scholar 

  • Carvey PM, S Pieri and ZD Ling (1997) Attenuation of levodopa-induced toxicity in mesencephalic cultures by pramipexole.J. Neuroal Transm. 104, 209–228.

    Article  CAS  Google Scholar 

  • Carvey PM, SO McGuire and ZD Ling (2001) Neuroprotective effects of D3 dopamine receptor agonists.Parkinsonism Relat. Disord. 7, 213–223.

    Article  PubMed  Google Scholar 

  • Cassarino DS and JP Bennett Jr (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration.Brain Res. Brain Res. Rev. 29, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Cassarino DS, CP Fall, TS Smith and JP Bennett Jr (1998) Pramipexole reduces reactive oxygen species productionin vivo andin vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion.J. Neurochem. 71, 295–301.

    PubMed  CAS  Google Scholar 

  • Choi WS, Y Yoon, TH Oh, EJ Choi, KL O'Malley and YJ Oh (1999) Two distinct mechanisms are involved in 6-hydroxydopamine-and MPP-induced dopaminergic neuronal cell death: role of caspases, ROS and JNK.J. Neurosci. Res. 57, 86–94.

    Article  PubMed  CAS  Google Scholar 

  • Chun HS, GE Gibson, LA DeGiorgio, H Zhang, VJ Kidd and JH Son (2001) Dopaminergic cell death induced by MPP, oxidant and specific neurotoxicants, shares the common molecular mechanism.J. Neurochem. 76, 1010–1021.

    Article  PubMed  CAS  Google Scholar 

  • Cohen G and P, Werner (1994) Free radicals, oxidative stress and neurodegeneration, inNeurodegenerative Disorders (Calne DB, Ed.) (WB Saunders, Philadelphia, PA), pp. 139–162.

    Google Scholar 

  • Diaz J, C Pilon, B Le Foll, C, Gros, A Triller, JC Schwartz and P Sokoloff (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J. Neurosci.20, 8677–8684.

    PubMed  CAS  Google Scholar 

  • Dickinson SD, J Sabeti, GA Larson, K Giardina, M Rubinstein, MA Kelly, DK Grandy, MJ Low, GA Gerhardt and NR Zahniser (1999) Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum.J. Neurochem. 72, 148–156.

    Article  PubMed  CAS  Google Scholar 

  • Eshleman AJ, E Stewart, AK Evenson, JN Mason, RD Blakely, A Janowsky and KA Neve (1997) Metabolism of catecholamines by catechol-O-methyltransferase in cells expressing recombinant catecholamine transportersJ. Neurochem. 69, 1459–1466.

    PubMed  CAS  Google Scholar 

  • Eshleman AJ, K Wolfrum, DC Mash, K Christensen and A Janowsky (2001) Drug interactions with the dopamine transporter in cryopreserved human caudate.J. Pharm. Exp. Ther. 296, 442–449.

    CAS  Google Scholar 

  • Fall CP and JP Bennett Jr (1999) Characterization and time course of MPP-induced apoptosis in human SH-SY5Y neuroblastoma cells.J. Neurosci. Res. 55, 620–628.

    Article  PubMed  CAS  Google Scholar 

  • Fang J, D Zuo and PH Yu (1995) Comparison of cytotoxicity of a quaternary pyridinium metabolite of haloperidol (HP+) with neurotoxinN-methyl-4-phenylpyridinium (MPP) towards cultured dopaminergic neuroblastoma cells.Psychopharmacology (Berl.) 121, 373–378.

    Article  CAS  Google Scholar 

  • Farooqui SM (1994) Induction of adenylate cyclase sensitive dopamine D2-receptors in retinoic acid induced differentiated human neuroblastoma SHSY-5Y cells.Life Sci. 55, 1887–1893.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, F Fumagalli, SR Jones and MG Caron (1997) Dopamine transporter is required forin vivo MPTP neurotoxicity: evidence from mice lacking the transporter.J. Neurochem. 69, 1322–1325.

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, JM Rivet, V Audinot, L Cistarelli, M Spedding, J Vian, JL Peglion and MJ Millan (1995) Functional correlates of dopamine D3 receptor activation in the ratin vivo and their modulation by the selective antagonist, (+)-S 14297: II. Both D2 and “silent” D3 autoreceptors control synthesis and release in mesolimbic, mesocortical and nigrostriatal pathways.J. Phar. Exp. Ther. 275, 899–913.

    CAS  Google Scholar 

  • Gómez C, J Reiriz, M Pique, J Gil, I Ferrer and S Ambrosio (2001) Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells.J. Neurosci. Rev. 63, 421–428.

    Article  Google Scholar 

  • Gómez-Santos C, I Ferrer, AF Santidrian, M Barrachina, J Gil and S Ambrosio (2003) Dopamine induces autophagic cell death and alpha-synuclein increase, in human neuroblastoma SH-SY5Y cells.J. Neurosci. Res. 73, 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E, S Mandel, T Berkuzki and MB Youdim (1999) Apomorphine protects against MPTP-induced neurotoxicity in mice.Mov. Disord. 14, 612–618.

    Article  PubMed  Google Scholar 

  • Hirsch EC, S Hunot and A Hartmann (2000) Mechanism of cell death in experimental models of Parkinson's disease.Funct. Neurol. 15, 229–237.

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1998) Biochemical aspects of Parkinson's disease.Neurology 51, S2-S9.

    PubMed  CAS  Google Scholar 

  • Iida M, I Miyazaki, K Tanaka, H Kabuto, E Iwata-Ichikawa and N Ogawa (1999) Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist.Brain Res. 838, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Itano Y and Y Nomura (1995) 1-methyl-4-phenyl-pyridinium ion (MPP) causes DNA fragmentation and increases the Bcl-2 expression in human neuroblastoma, SH-SY5Y cells, through different mechanisms.Brain Res. 704, 240–245.

    Article  PubMed  CAS  Google Scholar 

  • Jones DC, PG Gunasekar, JL Borowitz and GE Isom (2000) Dopamine-induced apoptosis is mediated by oxidative stress and is enhanced by cyanide in differentiated PC12 cells.J. Neurochem. 74, 2296–2304.

    Article  PubMed  CAS  Google Scholar 

  • Jung, M-Y, BV Skryabin, M Arai, S Abbondanzo, D Fu, J Brosius, NK Robakis, HG Polites, JE Pintar and C Schmauss (1999) Potentiation of the D2 mutant motor phenotype in mice lacking dopamine D2 and D3 receptors.Neuroscience 91, 911–924.

    Article  PubMed  CAS  Google Scholar 

  • Kakimura, J, Y Kitamura, K Takata, Y Kohno, Y Nomura and T Taniguchi (2001) Release and aggregation of cytochrome c and alpha-synuclein are inhibited by the antiparkinsonian drugs, talipexole and pramipexole.Eur. J. Pharmacol. 417, 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Kirkland RA, JA Windelborn, JM Kasprzak and JL Franklin (2002) A Bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death.J. Neurosci. 22, 6480–6490.

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Y Kohno, M Nakazawa and Y Nomura (1997) Inhibitory effects of talipexole and pramipexole on MPTP-induced dopamine reduction in the striatum of C57BL/6N mice.Jpn. J. Pharmacol. 74, 51–57.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, T Kosaka, JI Kakimura, Y Matsuoka, Y Kohno, Y Nomura and T Taniguchi (1998) Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells.Mol. Pharmacol. 54, 1046–1054.

    PubMed  CAS  Google Scholar 

  • Koeltzow TE, M Xu, DC Cooper, XT Hu, S Tonegawa, ME Wolf and FJ White (1998) Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice.J. Neurosci. 18, 2231–2238.

    PubMed  CAS  Google Scholar 

  • Koshimura K, J Tanaka, Y Murakami and Y Kata (2000) Effects of dopamine and L-DOPA on survival of PC12 cells.J. Neurosci. Res. 62, 112–119.

    Article  PubMed  CAS  Google Scholar 

  • L'hirondel M, A Cheramy, G Godeheu, F Artaud, A Saiardi, E Borrelli and J Glowinski (1998) Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice.Brain Res. 792, 253–262.

    Article  PubMed  Google Scholar 

  • Lai CT and PH Yu (1997) Dopamine- and L-beta-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)- induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factorsBiochem. Pharmacol. 53, 363–372.

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, P Ballard, JW Tetrud and I Irwin (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, LS Forno, J Tetrud, AG Reeves, JA Kaplan and D Karluk (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure.Ann. Neurol. 46, 598–605.

    Article  PubMed  CAS  Google Scholar 

  • Le WD, J Jankovic, W Xie and SH Appel (2000) Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection.J. Neural. Transm. 107, 1165–1173.

    Article  PubMed  CAS  Google Scholar 

  • Le Moine C and B Bloch (1991) Rat striatal and mesencephalic neurons contain the long isoform of the D2 dopamine receptor mRNA.Brain Res. Mol. Brain Res. 10, 283–289.

    PubMed  Google Scholar 

  • Ling ZD, HC Robie, CW Tong and PM Carvey (1999) Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures.J. Pharmacol. Exp. Ther. 289, 202–210.

    PubMed  CAS  Google Scholar 

  • Ling ZD, CW Tong and PM Carvey (1998) Partial purification of a pramipexole-induced trophic activity directed at dopamine neurons in ventral mesencephalic cultures.Brain Res. 791, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Marek K, J Seibyl, I Shoulson, R Holloway, K Kieburtz, M McDermott, C Kamp, A Shinaman, S Fahn, A Lang, W Weiner and M Welsh (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression.JAMA 287, 1653–1661.

    Article  CAS  Google Scholar 

  • Martel F, C Calhau and I Azevedo (2000) Characterization of the transport of the organic cation [3H]MPP+ in human intestinal epithelial (Caco-2) cells.Naunyn Schmiedebergs Arch. Pharmacol. 361, 505–513.

    Article  PubMed  CAS  Google Scholar 

  • Masserano JM, L Gong, H Kulaga, I Baker and RJ Wyatt (1996) Dopamine induces apoptotic cell death of a catecholaminergic cell line derived from the central nervous system.Mol. Pharmacol. 50, 1309–1315.

    PubMed  CAS  Google Scholar 

  • Matecka D, RB Rothman, L Radesca, BR de Costa, CM Dersch, JS Partilla, A Pert, JR Glowa, FH Wojnicki and KC Rice (1996) Development of novel, potent, and selective dopamine reuptake inhibitors through alteration of the piperazine ring of 1-[2-(diphenylmethoxy)ethyl]-and 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazines (GBR 12935 and GBR 12909).J. Med. Chem. 39, 4704–4716.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka I, N Mizuno and K Kurihara (1989) Cholinergic differentiation of clonal rat pheochromocytoma cells (PC12) induced by retinoic acid: increase of choline acetyltransferase activity and decrease of tyrosine hydroxylase activity.Brain Res. 502, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, U Thull, PA Carrupt, C Altomare, S Cellamare, A Carotti, B Testa, P Jenner and CD Marsden (1996) Nigral cell loss produced by infusion of isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.Neurodegeneration 5, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Muralikrishnan D and KP Mohanakumar (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice.FASEB J. 12, 905–912.

    PubMed  CAS  Google Scholar 

  • Murer MG, G Dziewezapolski, LB Menalled, MC Garcia, Y Agid, O Gershanik and R Raisman-Vozari (1998) Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions.Ann. Neurol. 43, 561–575.

    Article  PubMed  CAS  Google Scholar 

  • Oyarce AM and PJ Fleming (1991) Multiple forms of human dopamine beta-hydroxylase in SH-SY5Y neuroblastoma cells.Arch. Biochem. Biophys. 290, 503–510.

    Article  PubMed  CAS  Google Scholar 

  • Park, CW, HS Lee and YS Kim (1998) Mechanism of MPP(+)-induced cytotoxicity in human neuroblastoma SH-SY5Y.J. Toxicol. Sci. 23 Suppl 2, 184–188.

    PubMed  CAS  Google Scholar 

  • Pennypacker KR, DM Kuhn and ML Billingsley (1989) Changes in expression of tyrosine hydroxylase immunoreactivity in human SMS-KCNR neuroblastoma following retinoic acid or phorbol ester-induced differentiation.Brain Res. Mol. Brain Res. 5, 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, V Jackson-Lewis, R Djaldetti, G Liberatore, M Vila, S Vukosavic and G, Almer (2000) The parkinsonian toxin MPTP:action and mechanism.Restorative Neurol. Neurosci. 16, 135–142.

    CAS  Google Scholar 

  • Ramirez AD, SK Wong and FS Menniti (2003) Pramipexole inhibits MPTP toxicity in mice by dopamine D3 receptor dependent and independent mechanisms.Eur. J. Pharmacol. 475, 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Richards ML and W Sadee (1986) Human neuroblastoma cell lines as models of catechol uptake.Brain Res. 384, 132–137.

    Article  PubMed  CAS  Google Scholar 

  • Ross RA, BA Spengler and JL Biedler (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells.J. Natl. Cancer Inst. 71, 741–747.

    PubMed  CAS  Google Scholar 

  • Sheehan JP, PE Palmer, GA Helm and JB Tuttle (1997) MPP induced apoptotic cell death in SH-SY5Y neuroblastoma cells: an electron microscope study.J. Neurosci. Res. 48, 226–237.

    Article  PubMed  CAS  Google Scholar 

  • Simantov R, E Blinder, T Ratovitski, M, Tauber, M Gabbay and S Porat (1996) Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the dopamine transporter.Neuroscience 74, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Song X, S Perkins, BS Jortner and M Ehrich, (1997) Cytotoxic effects of MPTP on SH-SY5Y human neuroblastoma cells.Neurotoxicology 18, 341–353.

    PubMed  CAS  Google Scholar 

  • Spina MB, SP Squinto, J Miller, RM Lindsay and C Hyman (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine andN-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system [see comments].J. Neurochem. 59, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Stokes AH, DY Lewis, LH Lash WG Jerome, III, KW Grant, M Aschner and KE Vrana (2000) Dopamine toxicity in neuroblastoma cells: role of glutathione depletion by L-BSO and apoptosis.Brain Res. 858, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Storch A, K Burkhardt, AC Ludolph and J Schwarz (2000a) Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism.J. Neurochem. 75, 2259–2269.

    Article  PubMed  CAS  Google Scholar 

  • Storch A, A Kaftan, K Burkhardt and J Schwarz (2000b) 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism.J. Neural Transm. 107, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Veech GA, J Dennis, PM Keeney, CP Fall, RH Swerdlow, WD Parker Jr and JP Bennett Jr (2000) Disrupted mitochondrial electron transport function increases expression of anti-apoptotic bcl-2 and bcl-X(L) proteins in SH-SY5Y neuroblastoma and in Parkinson disease cybrid cells through oxidative stress.J. Neurosci. Res. 61, 693–700.

    Article  PubMed  CAS  Google Scholar 

  • Willets JM, DG Lambert, J Lunec and HR Griffiths (1995) Studies on the neurotoxicity of 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) in SH-SY5Y cells.Eur. J. Pharmacol. 293, 319–326.

    Article  PubMed  CAS  Google Scholar 

  • Zapata A and TS Shippenberg (2002) D3 receptor ligands modulate extracellular dopamine clearance in the nucleus accumbens.J. Neurochem. 81, 1035–1042.

    Article  PubMed  CAS  Google Scholar 

  • Zapata A, JM Witkin and TS Shippenberg (2001) Selective D3 receptor agonsit effects of (+)=PD 128907 on dialysate dopamine at low doses.Neuropharmacology 41, 351–359.

    Article  PubMed  CAS  Google Scholar 

  • Zou L, J Xu, J Jankovic, Y He, SH Appel and W Le (2000) Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice.Neurosci. Lett. 281, 167–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Joyce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presgraves, S.P., Ahmed, T., Borwege, S. et al. Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. neurotox res 5, 579–598 (2003). https://doi.org/10.1007/BF03033178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033178

Keywords

Navigation