Skip to main content
Log in

Molecular pathology of tumor metastasis

II. Molecular staging and differential diagnosis

  • Seminar
  • Published:
Pathology & Oncology Research

Abstract

Molecular Pathology of Tumor MetastasisWith the development of non-invasive methods, diagnosis of metastasis from various solid malignancies has become a routine task for diagnostic pathology. However, the differential diagnosis between primary and metastatic cancers and the precise identification of various metastatic cancer types requires the coordinated use of various morphological (light- and electron microscopic), immunological and molecular techniques. The detection of the lymphatic spread of the primary tumor may now based on the sentinel lymph node technology while the identification of the hematogenous progression may be based on the analysis of the peripheral blood and the bone marrow. More and more frequently these techniques employ highly sensitive immunological and molecular techniques. Accordingly, clinical staging is now confronted with the results of molecular staging, where the only techniques which are able to detect cancer cells are immunocytochemistry or nucleic acid-based methodology. Although several clinical studies have provided evidences for the impact of the immunocytochemistry-based identification of micrometastases on the survival of patients with various type of cancers, none of these methods have become part of standard diagnostic protocols. Although more sensitive molecular techniques are being introduced to identify micrometastasis, their clinical significance is yet unknown. Multicentric clinical trials are now warranted to establish the clinical impact of molecular staging in various cancer types. Without the integration of these methods into the prognostic/predictive pathological protocols it is difficult to envision significant improvement in the results of cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernini A, Spencer M, Frizelle S et al: Evidence for colorectal cancer micrometastases using reverse transcriptase-polymerase chain reaction analysis of MUC2 in lymph nodes. Cancer Detect Prev 24: 72–79, 2000

    PubMed  CAS  Google Scholar 

  2. Hardingham JE, Kotasek D, Farmer B et al: Immunobead-PCR: A technique for the detection of circulating tumor cells using immunomagnetic beads and the polymerase chain reaction. Cancer Res 53: 3455–3458, 1993

    PubMed  CAS  Google Scholar 

  3. Hildebrandt M, Mapara MY, Korner IJ et al: Reverse transcrip-tase-polymerase chain reaction (RT-PCR)-controlled immuno-magnetic purging of breast cancer cells using the magnetic cell separation (MACS) system: A sensitive method for monitoring purging efficiency. Exp Hematol 25: 57–65, 1997

    PubMed  CAS  Google Scholar 

  4. Tsuchiya A, Sugano K, Kimijima I, Abe R: Immunohisto-chemical evaluation of lymph node micrometastases from breast cancer. Acta Oncol 35: 425–428, 1996

    Article  PubMed  CAS  Google Scholar 

  5. Hashimoto T, Kobayashi Y, Ishikawa Y et al: Prognostic value of genetically diagnosed lymph node micrometastasis in non-small cell lung carcinoma cases. Cancer Res 60:6472–8, 2000

    PubMed  CAS  Google Scholar 

  6. Min CJ Tatra L, Verbanac KM: Identification of superior markers for polymerase chain reaction detection of breast cancer metastases in sentinel lymph nodes. Cancer Res 58: 4581–4584, 1998

    PubMed  CAS  Google Scholar 

  7. Mitas M, Mikhitarian K, Walters C et al: Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a multigene marker panel. Int J Cancer 93: 162–171, 2001

    Article  PubMed  CAS  Google Scholar 

  8. Blaheta HJ, Schittek B, Breuninger H et al: Lymph node micrometastases of cutaneous melanoma: increased sensitivity of molecular diagnosis in comparison to immunohisto-chemistry. Int J Cancer 79: 318–323, 1998

    Article  PubMed  CAS  Google Scholar 

  9. Biegliek SC, Ghossein RA, Bhattacharya S, Coi DG: Detection of tyrosinase mRNA by reverse transcriptase polymerase chain reaction (RT-PCR) in melanoma sentinel nodes. Ann Surg Oncol 6: 232–240, 1999

    Article  Google Scholar 

  10. Zeldman I, Buss JM. Experimental studies of the spread of cancer in the lymphatic system. Cancer Res 1954, 14: 403–405

    Google Scholar 

  11. Cserni G, Vajda K, Tarjan M et al: Nodal staging of colorectal carcinomas from quantitative and qualitative aspects. Can lymphatic mapping help staging? Pathol Oncol Res 5:291–6, 1999

    Article  PubMed  CAS  Google Scholar 

  12. Gould EA, Winship T, Philbin PH, Kerr HH Observations on a ‘sentinel node’ in cancer of the parotid. Cancer 13: 77–78, 1960

    Article  PubMed  CAS  Google Scholar 

  13. Cabañas RM. An approach for the treatment of penile carcinoma.Cancer 39: 456–466, 1977

    Article  PubMed  Google Scholar 

  14. Morton DL, Wen DR, Wong et al: Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127: 392–399, 1992

    PubMed  CAS  Google Scholar 

  15. Giuliano AE, Kirgan DM, Guenther JM, Morton DL. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg 1994, 220: 391–398

    Article  PubMed  CAS  Google Scholar 

  16. Krag DN, Weaver DL, Alex JC, Fairbank JT. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol 1993, 2: 335–339

    Article  PubMed  CAS  Google Scholar 

  17. Péley G, Farkas E, Téglás M et al: Feasibility and accuracy of the combined radioisotope and blue-dye guided sentinel lymph node biopsy in breast cancer. Magyar Sebészet 53:241–246, 2000

    PubMed  Google Scholar 

  18. Tanis PJ, Nieweg OE, Olmos RAV et al: History of sentinel node and validation of the technique. Breast Cancer Res 3: 109–112, 2001

    Article  PubMed  CAS  Google Scholar 

  19. Dowlatshahi K, Fan M, Snider HC, Habib FA. Lymph node micrometastases from breast carcinoma: reviewing the dilemma. Cancer 80:1188–1198, 1997

    Article  PubMed  CAS  Google Scholar 

  20. Cote RJ, Peterson HF, Chaiwun B et al: Role of immunohis-tochemical detection of lymph-node metastases in management of breast cancer. International Breast Cancer Study Group. Lancet 354:896–900, 1999

    Article  PubMed  CAS  Google Scholar 

  21. Rampaul RS, Miremadi A, Pinder SE et al: Pathological validation and significance of micrometastasis in sentinel nodes in primary breast cancer. Breast Cancer Res 5:113–6, 2001

    Article  Google Scholar 

  22. Silverberg SG. Sentinel node Processing. Recommendations for pathologists. Am J Surg Pathol 26:383–385, 2002

    Article  PubMed  Google Scholar 

  23. Hired MA, Middleton LP, Smith TL et al: Recommendation for sentinel lymph node processing in breast cancer. Am J Surg Pathol 26:377–382, 2002

    Article  Google Scholar 

  24. Cserni G. Metastases in axillary sentinel lymph nodes in breast cancer as detected by intensive histopathological work up.J Clin Pathol 52: 922–924, 1999

    Article  PubMed  CAS  Google Scholar 

  25. Veronesi U, Paganelli G, Viale G et al: Sentinel lymph node biopsy and axillary dissection in brest cancer: results in a large series. J Natl Cancer Inst 91:368–73, 1999

    Article  PubMed  CAS  Google Scholar 

  26. Ratanawichitrasin A, Biscotti CV, Levy L Crowe JP. Touch imprint cytologic analysis of sentinel lymph nodes for detecting axillary metastases in patients with breast cancer. Br J Surg 86:1346–8, 1999

    Article  PubMed  CAS  Google Scholar 

  27. Huvos AG, Hutter RV Berg JW Significance of axillary macrometastases and micrometastases in mammary cancer. Ann Surg 173:44–46, 1971

    Article  PubMed  CAS  Google Scholar 

  28. Fleming ID, Cooper JS, Henson DE et al: AJCC Cancer Staging Manual, Fifth Edition, Lippincott Williams Wilkins, 1998

  29. Association of Directors of Anatomic and Surgical Pathology. ADASP recommendations for processing and reporting lymph node specimens submitted for evaluation of metastatic disease. Am J Surg Pathol 25:961–3, 2001

    Article  Google Scholar 

  30. Weaver DL. Sentinel lymph node biopsy in breast cancer: creating controversy and defining new standards. Adv Anat Pathol 8:65–73, 2001

    Article  PubMed  CAS  Google Scholar 

  31. Papa, R: Bone marrow metastases. A review. Cancer 74: 2403–2413, 1994

    Article  Google Scholar 

  32. Pantel K, Schlimok G, Angstwurm M et al: Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow. J Hematother 3: 165–173, 1994

    PubMed  CAS  Google Scholar 

  33. Mathieu MC, Friedman S, Bosq J et al: Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis in breast cancer. Breast Cancer Res Treat 15: 21–26, 1990

    Article  PubMed  CAS  Google Scholar 

  34. Neumaier M, Gerhard M, Wagener C: Diagnosis of micrometastases by the amplification of tissue-specific genes. Gene 159: 43–47, 1995

    Article  PubMed  CAS  Google Scholar 

  35. Kaplan JC, Kahn A, Chelly J: Illegitimate transcription: its use in the study of inherited disease. Hum Mutat 1: 357–360, 1992

    Article  PubMed  CAS  Google Scholar 

  36. Ruud P, Fodstad O, Hovig E: Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells. Int J Cancer 80: 119–125, 1999

    Article  PubMed  CAS  Google Scholar 

  37. Bostick PJ, Chatterjee S, Chi DD et al: Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. J Clin Oncol 16: 2632–2640, 1998

    PubMed  CAS  Google Scholar 

  38. Ghossein RA, Scher HI, Gerald, WL et al: Detection of circulating tumor cells in patients with localized and metastatic prostatic carcinoma: clinical implications. J Clin Oncol 13: 1195–1200, 1995

    PubMed  CAS  Google Scholar 

  39. Soeth E, Vogel I, Röder C et al: Comparative analysis of bone marrow and venous blood isolates from gastrointestinal cancer patients for the detection of disseminated tumor cells using reverse transcriptase PCR. Cancer Res 57: 3106–3610, 1997

    PubMed  CAS  Google Scholar 

  40. Mansi J, Gogas H, Bliss J et al: Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet 354: 197–202, 1999

    Article  PubMed  CAS  Google Scholar 

  41. O’Sullivan GC, Collins JK, Kelly J et al: Micrometastases: marker of metastatic potential or evidence of residual disease? Gut 40: 512–515, 1997

    PubMed  CAS  Google Scholar 

  42. Pantel K andOtte M: Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells. Semin Cancer Biol 11:327–337, 2001

    Article  PubMed  CAS  Google Scholar 

  43. Pantel K, Cote RJ andFodstad: Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst 91: 1113–1124, 1999

    Article  PubMed  CAS  Google Scholar 

  44. Flatmark K, Bjørnland, Johannessen HO.et al: Immunomagnetic detection of Micrometastatic cells in bone marrow of colorectal cancer patients. Clin Cancer Res 8: 444–449, 2002

    PubMed  Google Scholar 

  45. Fodstad O, Faye R, Hoifordt HK.et al: Immunobead-based detection and characterization of circulating tumor cells in melanoma patients. Recent Results Cancer Res 158: 40–50, 2001

    PubMed  CAS  Google Scholar 

  46. Diel IJ: Bone marrow staging for breast cancer: is it better than axillary node disssection? Semin Oncol 28: 236–244, 2001

    Article  PubMed  CAS  Google Scholar 

  47. Cote RJ, Rosen PP, Leser ML. et al: Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9: 1749–1756, 19991

  48. Lindemann F, Schlimok G, Dirschedl P, et al: Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 340: 685–689, 1992

    Article  PubMed  CAS  Google Scholar 

  49. Braun S, Cevatli BS, Assemi C, et al: Comparative analysis of micrometastasis to the bone marrow and lymph nodes of node-negative breast cancer patients receiving no adjuvant therapy. J Clin Oncol 19: 1468–1475, 2001

    PubMed  CAS  Google Scholar 

  50. Gerber B, Krause A, Muller H, et al: Simultaneous immuno-histochemical detection of tumor cells in lymph nodes and bone marrow aspirate in breast cancer and its correlation with other prognostic factors. J Clin Oncol 19: 960–971, 2001

    PubMed  CAS  Google Scholar 

  51. Mansi JL, Gogas H, Bliss JM, et al: Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancer 354:197–202, 1999

    Article  CAS  Google Scholar 

  52. Harbeck N, Untch M, Pache L, et al: Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br J Cancer 69: 566–571, 1994

    PubMed  CAS  Google Scholar 

  53. Liefers GJ, Cleton-Jansen AM, van de Velde CJ, et al: Micrometastases and survival in stage II colorectal cancer. N Engl J Med 339:223–228, 1998

    Article  PubMed  CAS  Google Scholar 

  54. Jauch KW, Heiss MM, Gruetzner U, et al: Prognostic significance of bone marrow micrometastases in patients with gastric cancer. J Clin Oncol 14: 1810–1817, 1996

    PubMed  CAS  Google Scholar 

  55. Schlimok G, Funke I, Pantel K, et al: Micrometastatic tumour cells in bone marrow of patients with gastric cancer: methodological aspects of detection and prognostic significance. Eur J Cancer 27: 1461–1465, 1991

    Article  PubMed  CAS  Google Scholar 

  56. Schwarz G. Cytomorphology and cell yield in a new cytocentrifugal technique allowing the collection of the cell-free supernatant. Lab med 15:45–50, 1991.

    Google Scholar 

  57. Pantel K, Izbicki J, Passlick B, et al: Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancer 347: 649–653, 1996

    Article  CAS  Google Scholar 

  58. Osaki T, Oyama T, Gu CD, et al: Prognostic impact of micrometastatic tumor cells in the lymph nodes and bone marrow of patients with completely resected stage I non-small-cell lung cancer. J Clin Oncol 20: 2930–2936, 2002

    Article  PubMed  Google Scholar 

  59. Diel IJ, Cote RJ: Bone marrow and lymph node assessment for minimal residual disease in patients with breast cancer. Cancer Treat Rev 26:53–65, 2000

    Article  PubMed  CAS  Google Scholar 

  60. Diell IJ, Kaufmann M, Costa SD, et al: Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88: 1652–1658, 1996

    Article  Google Scholar 

  61. Cote RJ, Rosen PP, Lesser M, et al: Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9: 1749–1756, 1991

    PubMed  CAS  Google Scholar 

  62. Mori M, Mimori K, Ueo H et al: Molecular detection of circulating solid carcinoma cells in the peripheral blood: The concept of early sysemic disease. Int J Cancer 68: 739–743, 1996

    Article  PubMed  CAS  Google Scholar 

  63. Mori M, Mimori K, Ueo H et al: Clinical significance of molecular detection of carcinoma cells in lymph nodes and peripheral blood by reverse transcription-polymerase chain reaction in patients with gastrointestinal or breast carcinoma. J Clin Oncol 16: 128–132, 1998

    PubMed  CAS  Google Scholar 

  64. Racila E, Euhus D, Weiss AJ et al: Detection and characterization of carcinoma cells in blood. Proc Natl Acad Sci USA 95: 4589–4594, 1998

    Article  PubMed  CAS  Google Scholar 

  65. Berois N, Varangot M, Aizen B et al: Molecular detection of cancer cells in bone marrow and peripheral blood of patients with operable breast cancer. Comparison of CK19, MUC1 and CEA using RT-PCR. Eur J Cancer 36: 717–723, 2000

    Article  PubMed  CAS  Google Scholar 

  66. Watson MA, Fleming TP: Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res 56: 860–865, 1996

    PubMed  CAS  Google Scholar 

  67. Taback B, Chan AD, Kuo CT et al: Detection of occult metastatic breast cancer cells in blood by a multimolecular marker assay: correlation with clinical stage of disease. Cancer Res 61: 8845–8850, 2001

    PubMed  CAS  Google Scholar 

  68. Aihara T, Fujiwara Y, Ooka M et al: Mammaglobin B as a novel marker for detection of breast cancer micrometastases in axillary lymph nodes by reverse transcription-polymerase chain reaction. Breast Cancer Res Treat 58: 137–140, 1999

    Article  PubMed  CAS  Google Scholar 

  69. Zach O, Kasparu H, Krieger O, et al: Detection of circulating mammary carcinoma cells in the peripheral blood of breast cancer patients via a nested reverse transcriptase polymerase chain reaction assay for mammaglobin mRNA. J Clin Oncol 17:2015–2019, 1999

    PubMed  CAS  Google Scholar 

  70. Leitzel K, Lieu B, Curley E: Detection of cancer cells in peripheral blood of breast cancer patients using reverse transcription polymerase chain reaction for epidermal growth factor receptor. Clin Cancer Res 4: 3037–3043, 1998

    PubMed  CAS  Google Scholar 

  71. Bouizar Z, Spyratos F, Deytieux, S et al: Polymerase chain reaction analysis of parathyroid hormone-related protein gene expression in breast cancer patients and occurrence of bone metastases. Cancer Res 53: 5076–5078, 1993

    PubMed  CAS  Google Scholar 

  72. Wulf GG, Jurgens B, Liersch T et al: Reverse transcriptase-poly-merase chain reaction analysis of parathyroid hormonerelated protein for the detection of tumor cell dissemination in the peripheral blood and bone marrow of patients with breast cancer. J Cancer Res Clin Oncol 123: 514–521, 1997

    Article  PubMed  CAS  Google Scholar 

  73. Noguchi, S, Aihara, T, Motomura, K et al: Detection of breast cancer micrometastases in axillary lymph nodes by means of reverse transcriptasepolymerase chain reaction: Comparison between MUCI mRNA and keratin 19 mRNA amplification. Am J Pathol 148: 649–656, 1996

    PubMed  CAS  Google Scholar 

  74. Lonn U, Lonn S, Nilsson B, Stenkvist B: Prognostic value of erbB2 and myc amplification in breast cancer imprints. Cancer 75: 2681–2687, 1995

    Article  PubMed  CAS  Google Scholar 

  75. Slamon DJ, Clark GM, Wong SG et al Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science 235: 177–182, 1987

    Article  PubMed  CAS  Google Scholar 

  76. Saiki RK, Gelfand DH, Stoffel S et al: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491, 1988

    Article  PubMed  CAS  Google Scholar 

  77. Slade MJ, Smith BM, Sinnett HD, Cross NCP, Coombes RC: Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol 17:870–879, 1999

    PubMed  CAS  Google Scholar 

  78. Burchill SA, Bradbury MF, Pittman K et al: Detection of epithelial cancer cells in peripheral blood by reverse transcriptase polymerase chain reaction. Brit J Cancer 71: 278–281, 1995

    PubMed  CAS  Google Scholar 

  79. Smith B, Selby P, Southgate J et al: Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet 338: 1227–1229, 1991

    Article  PubMed  CAS  Google Scholar 

  80. Kunter U, Buer J, Probst M: Peripheral blood tyrosinase messenger RNA detection and survival in malignant melanoma. J Natl Cancer Inst 88: 590–594, 1996

    Article  PubMed  CAS  Google Scholar 

  81. Farthman B, Eberle J, Krasagakis K et al: RT PCR for tyrosinase mRNA positive cells in peripheral blood: evaluation strategy and correlation with known prognostic markers in 123 melanoma patients. J Invest Dermatol 110: 263–267, 1998

    Article  Google Scholar 

  82. Mellado B, Guttierrez L, Castel T et al: Prognostic significance of the detection of circulating malignant cells by reverse transcriptasepolymerase chain reaction in long-term clinically disease-free melanoma patients. Clin Cancer Res 5: 1843–1848, 1999

    PubMed  CAS  Google Scholar 

  83. Calaluce R, Miedema BW, Yesus YW et al: Micrometastasis in colorectal carcinoma: a review. J Surg Oncol 67: 194–202, 1998

    Article  PubMed  CAS  Google Scholar 

  84. Denis MG, Lipart C, Leborgne J et al: Detection of disseminated tumor cells in peripheral blood of colorectal cancer patients. Int J Cancer 74: 540–544, 1997

    Article  PubMed  CAS  Google Scholar 

  85. McCann J: Molecular markers may improve colon cancer staging, screening. J Natl Cancer Inst 92: 1039–1040, 2000

    Article  PubMed  CAS  Google Scholar 

  86. Weitz J, Kienle P, Magener A et al: Detection of disseminated colorectal cancer cells in lymph nodes, blood and bone marrow. Clin Cancer Res 5: 1830–1836, 1999

    PubMed  CAS  Google Scholar 

  87. Liefers GJ, Cleton-Jansen AM, van de Velde JH, et al: Micrometastases and survival in stage II colorectal cancer. N Engl J Med339: 223–228, 1998

    Article  PubMed  CAS  Google Scholar 

  88. Bilchik AJ, Nora D, Tollenaar RA et al: Ultrastaging of early colon cancer using lymphatic mapping and molecular analysis. Eur J Cancer 38: 977–985, 2002

    Article  PubMed  CAS  Google Scholar 

  89. Bilchik AJ, Saha S, Wiese D, et al: Molecular staging of early colon cancer on the basis of sentinel node analysis: a multicenter phase II trial. J Clin Oncol 19: 1128–1136, 2001

    PubMed  CAS  Google Scholar 

  90. Liefers GJ, Tollenar RA, Cleton-Jansen AM: Molecular staging of colorectal cancer: a step forward. Gastroenterology 116: 769–770, 1999

    Article  PubMed  CAS  Google Scholar 

  91. Futamura M, Takagi Y, Koumura, H et al: Spread of colorectal cancer micrometastases in regional lymph nodes by reverse transcriptasepolymerase chain reactions for carcinoembryonic antigen and cytokeratin. J Surg Oncol 68: 34–40, 1998

    Article  PubMed  CAS  Google Scholar 

  92. Gunn J, McCall JL, Yun K, Wright PA: Detection of micrometastases in colorectal cancer patients by K19 and K20 reverse-transcription polymerase chain reaction. Lab Invest 75:611–616, 1996

    PubMed  CAS  Google Scholar 

  93. Jung R, Petersen K, Kruger Wet: Detection of micrometastasis by cytokeratin 20 RT-PCR is limited due to stable background transcription in granulocytes. Br J Cancer 81: 870–873, 1999

    Article  PubMed  CAS  Google Scholar 

  94. Rosenberg R, Hoos A, Mueller J, Nekarda H: Impact of cytokeratin-20 and carcinoembryonic antigen mRNA detection by RT-PCR in regional lymph nodes of patients with colorectal cancer. Br J Cancaer 83: 1323–1329, 2000

    Article  CAS  Google Scholar 

  95. Wyld DK, Selby P, Perren TJ et al: Detection of colorectal cancer cells in peripheral blood by reverse-transcriptase polymerase chain reaction for cytokeratin 20. Int.J Cancer 79: 288–293, 1998

    Article  PubMed  CAS  Google Scholar 

  96. Merrie AE, Yun K, van Rij AM, McCall JL: Detection and significance of minimal residual disease in colorectal cancer. Histol Histopathol 14: 561–569, 1999

    PubMed  CAS  Google Scholar 

  97. Soeth E, Röder C, Juhl H et al: The detection of disseminated tumor cells in bone marrow from colorectal-cancer patients by a cytokeratin-20-specific nested reverse-transcriptase-poly-merasechain reaction is related to the stage of disease. Int J Cancer 69: 278–282, 1996

    Article  PubMed  CAS  Google Scholar 

  98. Tsavellas G, Patel H, Allen-Mersh TG: Detection and clinical significance of occult tumour cells in colorectal cancer. Br J Surg 88: 1307–1320, 2001

    Article  PubMed  CAS  Google Scholar 

  99. Gerhard M, Juhl H, Kalthoff H et al: Specific detection of carcinoembryonic antigen expressing tumor cells in bone marrow aspirated by polymerase chain reaction. J Clin Oncol 12: 725–729, 1994

    PubMed  CAS  Google Scholar 

  100. Wong LS, Cantrill JE, Odogwu S et al: Detection of circulating tumour cells and nodal metastasis by reverse transcriptase-poly-merase chain reaction technique. Br J Surg 84: 834–839, 1997

    Article  PubMed  CAS  Google Scholar 

  101. Castells A, Boix L, Bessa X et al: Detection of colonic cells in peripheral blood of colorectal cancer patients by means of reverse transcriptase and polymerase chain reaction. Br J Cancer 78: 1368–1372, 1998

    PubMed  CAS  Google Scholar 

  102. Hammar PS: Metastatic adenocarcinoma of unknown primary origin. Hum Path 29: 1319–1402, 1998

    Google Scholar 

  103. Gorstein F. Diagnostic electron microscopy of neoplasms. Hum Pathol 29:1335–1366, 1999.

    Google Scholar 

  104. Yu H, Levesque MA, Clark GM, et al.: Prognostic value of prostate-specific antigen for women with breast cancer: a large United States cohort study. Clin Cancer Res 4: 1489–1497, 1998

    PubMed  CAS  Google Scholar 

  105. Leong ASY Wick MR, Swanson PE: Immunohistology and ultrastructural features in site-specific epithelial neoplasms-an algorithmic approach. In: (Leong A.S-Y, Wick M.R, Swanson P.E. (Eds)): Immunohistology and electron microsacopy of anaplastic and pleomorphic tumours. Cambridge Univ Press, Cambridge, 1997, pp. 209–241.

    Google Scholar 

  106. Hendrix MJ, Seftor EA, Seftor RE, et al.: Biologic determinants of uveal melanoma metastatic phenotype: role of intermediate filaments as predictive markers. Lab Invest 78: 153–163, 1998

    PubMed  CAS  Google Scholar 

  107. Gillespie MT, Thoma RJ, Pu ZY, et al.: Calcitonin receptors, bone sialoprotein and oesteopontin are expressed in primary breast cancer. Int J Cancer 73: 812–815, 1997

    Article  PubMed  CAS  Google Scholar 

  108. Koeneman KS, Yeung F, Chung LW: Osteomimetic properties of prostate cancer cells: a hypophesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39: 246–261, 1999

    Article  PubMed  CAS  Google Scholar 

  109. Bertucci F, Houlgatte R, Nguyen C, et al: Gene expression profiling of cancer by use of DNA arrays: how far from the clinic? Lancet Oncol 2: 674–682, 2001

    Article  PubMed  CAS  Google Scholar 

  110. Ladanyi M, Chan WC, Triche TJ, Gerald, WL: Expression profiling of human tumors: the end of surgical pathology? J Mol Diagnostics 3: 92–97, 2001

    CAS  Google Scholar 

  111. Takemasa I, Higuchi H, Yamamoto H, et al.: Consruction of preferential cDNA microarray specialized for human colorectal carcinoma: molecular sketch of colorectal cancer. Biochem Biophys Res Commun 289: 1244–1249, 2001

    Article  CAS  Google Scholar 

  112. Zang H, Yu C-Y, Singer B, Xiong M: Recursive partitioning for tumor classification with gene expression microarray data. PNAS 98: 6730–6735, 2001

    Article  Google Scholar 

  113. Garber ME, Troyanskaya OG, Schluens K, et al.: Diversity of gene expression in adenocarcinoma of the lung. PNAS 98: 13784–13789, 2001

    Article  PubMed  CAS  Google Scholar 

  114. Bull JH, Ellison G, Patel A, et al.: Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br J Cancer 84: 1512–1519, 2001

    Article  PubMed  CAS  Google Scholar 

  115. Dhanasekaran SM, Barrette RT, Ghosh D, et al.: Delineation of prognostic biomarkers in prostate cancer. Nature 412: 822–826, 2001

    Article  PubMed  CAS  Google Scholar 

  116. Ross DT, Schert U, Eisen MB, et al.: Systematic variation in gene expression patterns in human cancer cell lines. Nature Gen 24: 227–235, 2000

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Tímár.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tímár, J., Csuka, O., Orosz, Z. et al. Molecular pathology of tumor metastasis. Pathol. Oncol. Res. 8, 204–219 (2002). https://doi.org/10.1007/BF03032397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03032397

Keywords

Navigation