Skip to main content
Log in

Expression of erbB/HER receptors, heregulin and p38 in primary breast cancer using quantitative immunohistochemistry

  • Article
  • Published:
Pathology Oncology Research

Abstract

The purpose of this study was to investigate the frequency of expression of the erbB/HER family of growth factor receptors, their ligand heregulin, and the two different signaling pathways p38 and mitogen-activated protein kinase (MAPK), as well as the status of HER-2 phosphorylation in tumor specimens from patients with primary breast cancer. The level of expression of these proteins was measured by quantitative immunohistochemistry combined with microscope-based image analysis in paraffin-embedded breast cancer tissue from 35 patients. The frequency of expression was: EGFR (51%), HER-2 (54%), P-HER-2 (48%), HER-3 (48%), HER-4 (57%), heregulin (48%), p38 (17%), MAPK (48%). There was evidence of associations among the coexpression of heregulin, EGFR, HER-2, and HER-3. Also, there was evidence of a positive association between P-MAPK and HER-4. HER-3 was expressed at high levels in patients younger than 50 years of age. There was a trend for expression of higher levels of HER-4 in tumors larger than 2 cm. The expression of EGFR, HER-2, heregulin, p38 and MAPK was independent of age, tumor size, number of lymph nodes involved or hormone receptor status. The HER family of growth factor receptors appear to be regulated independently in invasive breast cancer. Assessing the expression of multiple tumor markers by quantitative immunohistochemistry is feasible. Further research is needed to determine the prognostic and predictive roles of the various associations between HER receptors, their ligands and signal transduction molecules in patients with early-stage breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacus SS, Gudkov AV, Esteva FJ, et al; Expression of erb-B receptors and their ligands in breast cancer: implications to biological behavior and therapeutic response. Breast Disease 11:63–75, 2000.

    PubMed  CAS  Google Scholar 

  2. Schechter AL, Hung MC, Vaidyanathan L, et al; The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229:976–978, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Dickson RB, Lippman ME; Growth factors in breast cancer. Endocr Rev 16:559–589, 1995.

    PubMed  CAS  Google Scholar 

  4. Slamon DJ, Clark GM, Wong SG, et al; Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Gasparini G, Gullick WJ, Bevilacqua P, et al; Human breast cancer: prognostic significance of the c-erb B-2 oncoprotein compared with epidermal growth factor receptor, DNA ploidy, and conventional pathologic features. J Clin Oncol 10:686–695, 1992.

    PubMed  CAS  Google Scholar 

  6. Harris AL, Nicholson S, Sainsbury R, et al; Epidermal growth factor receptor and other oncogenes as prognostic markers. J Natl Cancer Inst 181–187, 1992.

  7. Muss HB, Thor AD, Berry DA, et al; c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 330:1260–1266, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Thor AD, Berry DA, Budman DR, et al; erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J Natl Cancer Inst 90:1346–1360, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Paik S, Bryant J, Park C, et al; erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst 90:1361–1370, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Gusterson BA, Gelber RD, Goldhirsch A, et al; Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol 10:1049–1056, 1992.

    PubMed  CAS  Google Scholar 

  11. Baselga J, Seidman A, Rosen PP, et al; HER2 overexpression and paclitaxel sensitivity in breast cancer: therapeutic implications. Oncology 11:43–48, 1997.

    PubMed  CAS  Google Scholar 

  12. Carlomagno C, Perrone F, Gallo C, et al; c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol 14:2702–2708, 1996.

    PubMed  CAS  Google Scholar 

  13. Elledge RM, Green S, Ciocca D, et al; HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a Southwest Oncology Group Study. Clin Cancer Res 4:7–12, 1998.

    PubMed  CAS  Google Scholar 

  14. Lemoine NR, Barnes DM, Hollywood DP, et al; Expression of the ERBB3 gene product in breast cancer. Br J Cancer 66:1116–1121, 1992.

    PubMed  CAS  Google Scholar 

  15. Kumar NB, Cantor A, Allen K, et al; Android obesity at diagnosis and breast carcinoma survival — Evaluation of the effects of anthropometric variables at diagnosis, including body composition and body eat distribution and weight gain during life span, and survival from breast carcinoma. Cancer 88:2751–2757, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Gullick WJ; The c-erbB3/HER3 receptor in human cancer. Cancer Surveys 27:339–349, 1996.

    PubMed  CAS  Google Scholar 

  17. Kew TY, Bell JA, Pinder SE, et al; c-erbB-4 protein expression in human breast cancer. British Journal of Cancer 82:1163–1170, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Xia Z, Dickens M, Raingeaud J, et al; Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Bacus SS, Plowman G, Yarden Y; Expression of erbB-2 receptor family and their ligands: implication to breast cancer biological behavior (Meeting abstract). Breast Cancer Res Treat 32:93–93, 1994.

    Google Scholar 

  20. Tang MTC, Weiss NS, Daling JR, et al; Case-control differences in the reliability of reporting a history of induced abortion. Amer J Epidemiol 151:1139–1143, 2000.

    CAS  Google Scholar 

  21. Drumea KC, Levine E, Bernstein J, et al; ATM heterozygosity and breast cancer: screening of 37 breast cancer patients for ATM mutations using a non-isotopic RNase cleavage-based. Breast Cancer Res Treat 61:79–85, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Wang TTY, Jeng JJ; Coordinated regulation of two TRAIL-R2/KILLER/DR5 mRNA isoforms by DNA damaging agents, and 17 beta-estradiol in human breast cancer cells. Breast Cancer Research and Treatment 61:87–96, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. Plowman GD, Culouscou JM, Whitney GS, et al; Ligand-specific activation of HER4/p 180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 90:1746–1750, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Knowlden JM, Gee JM, Seery LT, et al; c-erbB3 and c-erbB4 expression is a feature of the endocrine responsive phenotype in clinical breast cancer. Oncogene 17:1949–1957, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Lupu R, Lippman ME; William L. McGuire Memorial Symposium. The role of erbB2 signal transduction pathways in human breast cancer. Breast Cancer Res Treat 27:83–93, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Peles E, Ben-Levy R, Tzahar E, et al; Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships. EMBO J 12:961–971, 1993.

    PubMed  CAS  Google Scholar 

  27. Bacus SS, Gudkov AV, Zelnick CR, et al; Neu differentiation factor (heregulin) induces expression of intercellular adhesion molecule 1: implications for mammary tumors. Cancer Res 53:5251–5261, 1993.

    PubMed  CAS  Google Scholar 

  28. Bacus SS, Gudkov AV, Esteva FJ, et al; Expression of erb-B Receptors and Their Ligands in Breast Cancer: Implications to Biological Behavior and Therapeutic Response, in Liu E (ed): The Breast, 2000.

  29. Daly JM, Olayioye MA, Wong AM, et al; NDF/heregulininduced cell cycle changes and apoptosis in breast tumour cells: role of PI3 kinase and p38 MAP kinase pathways. Oncogene 18:3440–3451, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Liu W, Li J, Roth RA; Heregulin regulation of Akt/protein kinase B in breast cancer cells. Biochem Biophys Res Com 261:897–903, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Altiok S, Batt D, Altiok N, et al; Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-Kinase/AKT in breast cancer cells. J Biol Chem 274:32274–32278, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Aguilar Z, Akita RW, Finn RS, et al; Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 18:6050–6062, 1999.

    Article  PubMed  CAS  Google Scholar 

  33. Bacus SS, Stancovski I, Huberman E, et al; Tumor-inhibitory monoclonal antibodies to the HER-2/Neu receptor induce differentiation of human breast cancer cells. Cancer Res 52:2580–2589, 1992.

    PubMed  CAS  Google Scholar 

  34. Romashkova JA, Makarov SS; NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86–90, 1999.

    Article  PubMed  CAS  Google Scholar 

  35. Majewski M, Nieborowska-Skorska M, Salomoni P, et al; Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Research 59:2815–2819, 1999.

    PubMed  CAS  Google Scholar 

  36. Xu FJ, Stack S, Boyer C, et al; Heregulin and agonistic anti-p185 (c-erbB2) antibodies inhibit proliferation but increase invasiveness of breast cancer cells that overexpress p185(c-erbB2): increased invasiveness may contribute to poor prognosis. Clin Cancer Res 3:1629–1634, 1997.

    PubMed  CAS  Google Scholar 

  37. Harris LN, Yang L, Tang C, et al; Induction of sensitivity to doxorubicin and etoposide by transfection of MCF-7 breast cancer cells with heregulin beta-2. Clin Cancer Res 4:1005–1012, 1998.

    PubMed  CAS  Google Scholar 

  38. Bacus SS, Gudkov AV, Lowe M, et al. Taxol-induced cytotoxicity: apoptotic signaling via MAP kinase pathways. Oncogene. 20:147–155, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Komurasaki T, Toyoda H, Uchida D, et al; Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene 15:2841–2848, 1997.

    Article  PubMed  CAS  Google Scholar 

  40. Tzahar E, Pinkas-Kramarski R, Moyer JD, et al; Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J 16:4938–4950, 1997.

    Article  PubMed  CAS  Google Scholar 

  41. Pinkas-Kramarski R, Lenferink AE, Bacus SS, et al; The oncogenic ErbB-2/ErbB-3 heterodimer is a surrogate receptor of the epidermal growth factor and betacellulin. Oncogene 16:1249–1258, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteva, F.J., Hortobagyi, G.N., Sahin, A.A. et al. Expression of erbB/HER receptors, heregulin and p38 in primary breast cancer using quantitative immunohistochemistry. Pathol. Oncol. Res. 7, 171–177 (2001). https://doi.org/10.1007/BF03032345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03032345

Keywords

Navigation