Skip to main content
Log in

Abstract

Long-standing major questions in auxin biology are now being answered through the latest discoveries and characterizations of auxin receptors and transporters. An F-box protein TIR1 and its close homologs are emerging as potent auxin receptors, which directly modulate the degradation of transcriptional repressors for auxin-responsive genes. The membrane proteins for polar auxin transport, intuited by Darwin almost 130 years ago, have been characterized over the past decade and implicated in diverse aspects of auxin-mediated plant development. This growth regulator is now considered to be a plant equivalent of morphogen because of how crucial the formation of its transporter-associated concentration gradient is to the patterning processes of plants. Such long-distance auxin-signaling from the source to the target cell via transporters has helped advance our understanding of plant development as a holistic system. Here, we summarize recent achievements in the study of molecular and long-distance signaling mechanisms for auxin, and discuss their biological meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

LITERATURE CITED

  • Abas L, Benjamins R, Malenica N, Paciorek T, Wisniewska J, Moul-inier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006) Intracel-lular trafficking and proteolysis of theArabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol8: 249–256

    Article  PubMed  CAS  Google Scholar 

  • Ambudkar SV, Sauna ZE, Gottesman MM, Szakacs C (2005) A novel way to spread drug resistance in tumor cells: Functional intercellular transfer of P-glycoprotein (ABCB1). Trends Pharmacol Sci26: 385–387

    Article  PubMed  CAS  Google Scholar 

  • Badescu CO, Napier RM (2006) Receptors for auxin: Will it all end in TIRs? Trends Plant Sci11: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Samaj J, Menzel D (2003) Polar transport of auxin: Carrier-mediated flux across the plasma membrane of neurotrans-mitter-like secretion? Trends Cell Biol13: 282–285

    Article  PubMed  CAS  Google Scholar 

  • Barbier-Brygoo H, Zimmermann S, Thomine S, White IR, Millner P, Guern J (1996) Elementary auxin response chains at the plasma membrane involve external ABP1 and multiple elec-trogenic ion transport proteins. Plant Growth Regul18: 23–28

    Article  CAS  Google Scholar 

  • Baskin TI, Wilson JE (1997) Inhibitors of protein kinases and phos-phatases alter root morphology and disorganize cortical micro-tubules. Plant Physiol113: 493–502

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development inArabidopsis by enhancing polar auxin transport. Dev128: 4057–4067

    CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens C, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell115: 591–602

    Article  PubMed  CAS  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR , Schulz B, Feldmann KA (1996)Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science273: 948–950

    Article  PubMed  CAS  Google Scholar 

  • Bennett SRM, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis inpinoid mutants ofArabidopsis thaliana. Plant J8: 505–520

    Article  CAS  Google Scholar 

  • Bhalerao RP, Bennett M (2003) The case for morphogens in plants. Nat Cell Biol5: 939–943

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Lee OR, Sauer M, Mravec J, Titapi-watanakun B, Makam S, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions among PINFORMED (PIN) and P-glycoprotein (PGP) auxin transporters inArabidopsis thaliana. Plant Cell (in press)

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol8: 494–500

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu j, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Schere B (2005) The PIN auxin efflux facilitator network controls growth and patterning inArabidopsis roots. Nature433: 39–44

    Article  PubMed  CAS  Google Scholar 

  • Bögre L, Okresz L, Henriques R, Anthony RG (2003) Growth signalling pathways inArabidopsis and the AGC protein kinases. Trends Plant Sci8: 424–431

    Article  PubMed  Google Scholar 

  • Bouchard R, Bailly A, Blakeslee JJ, Oehring S, Vincenzetti V, Lee OR, Paponov I, Palme K, Mancuso S, Murphy AS, Schulz B, Geisler M (2006) Immunopilin-like TWISTED DWARF1 modulates auxin efflux activities ofArabidopsis p-glycoproteins. J Biol Chem281: 30603–30612

    Article  PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transportin vivo inArabidopsis thaliana. Plant Physiol126: 524–535

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division inArabidopsis embryogenesis. Genes Dev15: 902–911

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) TheArabidopsis thaliana AGRAVITROPIC 7 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA95: 15112–15117

    Article  PubMed  CAS  Google Scholar 

  • Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression inArabidopsis. Plant Cell14: 3237–3253

    Article  PubMed  CAS  Google Scholar 

  • Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell100: 469–478

    Article  PubMed  CAS  Google Scholar 

  • Darwin CR (1880) The Power of Movement in Plants. John Murray, London

    Google Scholar 

  • del Pozo JC, Estelle M (1999) TheArabidopsis cullin AtCULI is modified by the ubiquitin-related protein RUB1. Proc Natl Acad Sci USA96: 15342–15347

    Article  PubMed  CAS  Google Scholar 

  • Delbarre A, Müller P, Guern J (1998) Short-lived and phosphory-lated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol116: 833–844

    Article  PubMed  CAS  Google Scholar 

  • DeLong A, Mockaitis K, Christensen S (2002) Protein phosphorylation in the delivery of and response to auxin signals. Plant Mol Biol49: 285–303

    Article  PubMed  CAS  Google Scholar 

  • Deshaies RJ (1999) SCF and cullin/ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol15: 435–467

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature435: 441–445

    Article  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Jones AM, Estelle M (2003a) Auxin action in a cell-free system. Curr Biol13: 1418–1422

    Article  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F-box proteins. Dev Cell9: 109–119

    Article  CAS  Google Scholar 

  • Dharmasiri S, Dharmasiri N, Hellmann H, Estelle M (2003b) The RUB/Nedd8 conjugation pathway is required for early development inArabidopsis. EMBO J22: 1762–1770

    Article  CAS  Google Scholar 

  • Dharmasiri S, Swamp R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science312: 1218–1220

    Article  PubMed  CAS  Google Scholar 

  • Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA103:236–241

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning inArabidopsis. Cell108: 661–673

    Article  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz, H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis ofArabidopsis. Nature426: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism inArabidopsis. Nature415: 806–809

    Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science306: 862–865

    Article  PubMed  CAS  Google Scholar 

  • Garbers C, DeLong A, Deruàre J, Bernasconi P, Söll D (1996) A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport inArabidopsis. EMBO J15: 2115–2124

    PubMed  CAS  Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R, Lee O, Vincenzetti V, Bandyopadhyay A, Peer WA, Bailly A, Richards EL, Edjendal KF, Smith AP, Baroux C, Grossniklaus U, Müller A , Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by theArabidopsis MDR/PGP transporter AtPGPI. Plant J44: 179–194

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: The role of p-glycoproteins in plant development. FEBS Lett580: 1094–10102

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature413: 425–428

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Hellmann H, Dharmasiri S, Estelle M (2002) Role of theArabidopsis RING H2 protein RBX1 in RUB modification and SCF function. Plant Cell14: 2137–2144

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature414: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol Biol49: 373–385

    Article  PubMed  CAS  Google Scholar 

  • Hertel R, Thomson K, Russo VEA (1972)In vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta107: 325–340

    Article  CAS  Google Scholar 

  • Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNXI defines an endosome for auxin-carrier trafficking inArabidopsis. Nature443: 106–109

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005)The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature435: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Kerr ID, Bennett MJ (2007) New insight into the biochemical mechanisms regulating auxin transport in plants. Biochem J401: 613–622

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park Yl, Cho HT (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell18: 2958–2970

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA94: 11786–11791

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Cho HT (2006) PINOID positively regulates auxin efflux inArabidopsis root hair cells and tobacco cells. Plant Cell18: 1604–1616

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2005) Auxin distribution and plant pattern formation: How many angels can dance on the point of PIN? Cell121: 819–822

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol16: R424-R433

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol49: 387–400

    Article  PubMed  CAS  Google Scholar 

  • Luschnig C, Caxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravit-ropism inArabidopsis thaliana. Genes Dev12: 2175–2187

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Rober B, Schultz B (2002) Multifunctionality of plant ABC transporters — more than just detoxifiers. Planta214: 345–355

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus ofArabidopsis for root gravitropism control. EMBOJ17: 6903–6911

    Article  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maizebr2 and sorghumdw3 mutants. Science302: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Murphy AS, Hoogner KR, Peer WA, Taiz L (2002) Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases fromArabidopsis. Plant Physiol128: 935–950

    Article  PubMed  CAS  Google Scholar 

  • Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol49: 339–348

    Article  PubMed  CAS  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes ofArabidopsis required for auxin transport and auxin-mediated development. Plant Cell13: 2441–2454

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Shimura Y (1994) Modulation of root growth by physical stimuli,In EM Meyerowitz, CR Somerville, eds, Arabidopsis. Cold Spring Harbor Press, New York, pp 665–684

    Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stagesof Arabidopsis floral bud formation. Plant Cell3: 677–684

    Article  PubMed  CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: Evolutionary and functional perspectives. Trends Plant Sci10: 170–177

    Article  PubMed  CAS  Google Scholar 

  • Parry G, Estelle M (2006) Auxin receptors: A new role of F-box proteins. Curr Opin Cell Biol18: 1–5

    Article  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen R, Mason P, Murphy A (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport inArabidopsis thaliana. Plant Cell16: 1898–1911

    Article  PubMed  CAS  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullinring ubiquitin ligases. Nat Rev Mol Cell Biol6: 9–20

    Article  PubMed  CAS  Google Scholar 

  • Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol9: 1–6

    Article  Google Scholar 

  • Rashotte AM, DeLong A, Muday GK (2001) Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response and lateral root growth. Plant Cell13: 1683–1697

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol74: 163–172

    Article  CAS  Google Scholar 

  • Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta188: 101–121

    Article  Google Scholar 

  • Rück A, Palme K, Venis MA, Napier RM, Felle RH (1993) Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zeamays protoplasts. Plant J4: 41–46

    Article  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein ofArabidopsis functions in auxin response and is related to human SKP2 and yeastgrr1p. Genes Dev12: 198–207

    Article  PubMed  CAS  Google Scholar 

  • Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Düchtig P, Mancuso S, Martinoia E, Geisler M (2005) MDR-Like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett579: 5399–5406

    Article  PubMed  CAS  Google Scholar 

  • Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C (1996) Brefeldin A effects in plant and fungal cells: Something new about vesicle trafficking? J Microscopy181: 162–177

    CAS  Google Scholar 

  • Scheres B, Xu J (2006) Polar auxin transport and patterning: Grow with the flow. Genes Dev20: 922–926

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein JW (2000) Constructing a plant cell: The genetic control of root hair development. Plant Physiol124: 1525–1531

    Article  PubMed  CAS  Google Scholar 

  • Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng XW (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science292: 1379–1382

    Article  PubMed  CAS  Google Scholar 

  • Steffens B, Feckler C, Palme K, Christian M, Böttger M, Lüthen H (2001) The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J27: 591–599

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in theArabidopsis root apex. Genes Dev15: 2648–2653

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Kramer EM, Knox K, Leyser O, Haseloff J, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol7: 1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Marchant A, Bennett MJ (2000) Auxin transport: Providing a sense of direction during plant development. Biochem Soc Trans28: 481–485

    Article  PubMed  CAS  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP-binding cassette P-glycopro-tein, catalyzes auxin transport inArabidopsis thaliana roots. Plant Cell17: 2922–2939

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, Blatt MR, Fricker MD, White IR, Millner P (1993) Modulation of K+ channels inVicia stomatal guard cells by peptide homologs to the auxin-binding protein C terminus. Proc Natl Acad Sci USA90: 11493–11497

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell15: 533–543

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell16: 533–543

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Wang Xj, Hagen G, Guilfoyle TJ (2001) Aux/IAA proteins are active repressors and their stability and activity are modulated by auxin. Plant Cell13: 2809–2822

    Article  PubMed  CAS  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc London B237: 37–72

    Article  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science276: 1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Utsuno K,Shikanai T,Yamada Y,Hashimoto T (1998) AGR, an agravitropic locus ofArabidopsis thaliana, encodes a novel membrane protein family member. Plant Cell Physiol39: 1111–1118

    PubMed  CAS  Google Scholar 

  • Venis MA,Napier RM (1995) Auxin receptors and auxin binding proteins. Crit Rev Plant Sci14: 27–47

    Article  CAS  Google Scholar 

  • Went FW (1926) On growth-accelerating substances in the coleoptile ofAvena sativa. Proc Kon Ned Akad Wet30: 10–19

    Google Scholar 

  • Wiśniewska J,Xu J,Seifertová D,Brewer PB,Ruzicka K,Blilou I,Rouquie D,Benkova E,Scheres B,Friml J (2006) Polar PIN localization directs auxin flow in plants. Science312: 858–860

    Article  Google Scholar 

  • Yamaki K,Hong J,Hiraizumi K,Ahn JW,Zee O,Ohuchi K (2002) Participation of various kinases in staurosporine induced apoptosis of RAW 264.7 cells. J Pharm Pharmacol54: 1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Yang Y,Hammes UZ,Taylor CG,Schachtman DP,Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol16: 1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Yazaki K,Shitan N,Takamatsu H,Ueda K,Sato F (2001) A novelCoptis japonica multidrug-resistant protein preferentially expressed in the alkaloid-accumulating rhizome. J Exp Bot52:877–879

    PubMed  CAS  Google Scholar 

  • Zimmermann S,Thomine S,Guern J,Barbier-Brygoo H (1994) An anion current at the plasma membrane of tobacco protoplasts shows ATP-dependent voltage regulation and is modulated by auxin. Plant J6: 707–716

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Taeg Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, M., Lee, O.R., Ganguly, A. et al. Auxin-signaling: short and long. J. Plant Biol. 50, 79–89 (2007). https://doi.org/10.1007/BF03030615

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030615

Keywords

Navigation